X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/a2aa3f0f91a668ee6e799bad0f4de90b7b2be452..b1fd489e34a8d46d286a0d271c38cbfb442f511f:/BookGPU/Chapters/chapter9/ch9.tex diff --git a/BookGPU/Chapters/chapter9/ch9.tex b/BookGPU/Chapters/chapter9/ch9.tex index 0fe38c4..0294f48 100644 --- a/BookGPU/Chapters/chapter9/ch9.tex +++ b/BookGPU/Chapters/chapter9/ch9.tex @@ -99,7 +99,7 @@ solutions. The process is repeated until a stopping criterion is satisfied. \emph{Evolutionary algorithms}, \emph{swarm optimization}, and \emph{ant colonies} fall into this class. - +\clearpage \section{Parallel models for metaheuristics}\label{ch8:sec:paraMeta} Optimization problems, whether real-life or academic, are more often NP-hard and CPU time and/or memory consuming. Metaheuristics @@ -188,7 +188,7 @@ solution-level\index{metaheuristics!solution-level parallelism} parallel model is problem-dependent.} \end{itemize} \clearpage -\section{Challenges for the design of GPU-based metaheuristics} +\section[Challenges for the design of GPU-based metaheuristics]{Challenges for the design of GPU-based\hfill\break metaheuristics} \label{ch8:sec:challenges} Developing GPU-based parallel @@ -501,7 +501,7 @@ QAPLIB~\cite{burkard1991qaplib}. Speedups up to $10 \times$ are achieved by the GPU implementation compared to the same sequential implementation on CPU using SA-matrix. -\subsection[Implementing population-based metaheuristics\hfill\break on GPUs]{Implementing population-based metaheuristics on GPUs} +\subsection[Implementing population-based metaheuristics on GPUs]{Implementing population-based metaheuristics on GPUs} State-of-the-art works dealing with the implementation of p-metaheuristics on GPUs generally rely on parallel models and