X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/b4a21f0b9226126a2c50f54a5518be5ef7c60749..HEAD:/BookGPU/Chapters/chapter12/ch12.tex?ds=inline diff --git a/BookGPU/Chapters/chapter12/ch12.tex b/BookGPU/Chapters/chapter12/ch12.tex index 4fe0eb9..4bc95a6 100755 --- a/BookGPU/Chapters/chapter12/ch12.tex +++ b/BookGPU/Chapters/chapter12/ch12.tex @@ -19,7 +19,7 @@ \label{ch12:sec:01} Sparse linear systems are used to model many scientific and industrial problems, such as the environmental simulations or the industrial processing of the complex or -non-Newtonian fluids. Moreover, the resolution of these problems often involves the +nonNewtonian fluids. Moreover, the resolution of these problems often involves the solving of such linear systems that are considered the most expensive process in terms of execution time and memory space. Therefore, solving sparse linear systems must be as efficient as possible in order to deal with problems of ever increasing @@ -548,8 +548,10 @@ which are the number of rows, the total number of nonzero values, and the maxima the present chapter, the bandwidth of a sparse matrix is defined as the number of matrix columns separating the first and the last nonzero value on a matrix row. + \begin{table} \centering +\begin{small} \begin{tabular}{|c|c|c|c|c|} \hline {\bf Matrix Type} & {\bf Matrix Name} & {\bf \# Rows} & {\bf \# Nonzeros} & {\bf Bandwidth} \\ \hline \hline @@ -578,10 +580,12 @@ the first and the last nonzero value on a matrix row. & torso3 & $259,156$ & $4,429,042$ & $216,854$ \\ \hline \end{tabular} +\end{small} \caption{Main characteristics of sparse matrices chosen from the University of Florida collection.} \label{ch12:tab:01} \end{table} + \begin{table}[!h] \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|} @@ -607,6 +611,7 @@ thermal2 & $1.172s$ & $0.622s$ & $1.88$ & $ \begin{table}[!h] \begin{center} +\begin{small} \begin{tabular}{|c|c|c|c|c|c|c|} \hline {\bf Matrix} & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$ & $\mathbf{\#~Iter.}$ & $\mathbf{Prec.}$ & $\mathbf{\Delta}$ \\ \hline \hline @@ -635,6 +640,7 @@ poli\_large & $0.097s$ & $0.095s$ & $1.02$ & $ torso3 & $4.242s$ & $2.030s$ & $2.09$ & $175$ & $2.69e$-$10$ & $1.78e$-$14$ \\ \hline \end{tabular} +\end{small} \caption{Performances of the parallel GMRES method on a cluster 24 CPU cores vs. on cluster of 12 GPUs.} \label{ch12:tab:03} \end{center} @@ -742,7 +748,7 @@ are better than those of the GMRES method for solving large symmetric linear sys CG method is characterized by a better convergence\index{convergence} rate and a shorter execution time of an iteration than those of the GMRES method. Moreover, an iteration of the parallel GMRES method requires more data exchanges between computing nodes compared to the parallel CG method. - +\clearpage \begin{table}[!h] \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|} @@ -769,6 +775,7 @@ on a cluster of 12 GPUs.} \begin{table}[!h] \begin{center} +\begin{small} \begin{tabular}{|c|c|c|c|c|c|c|} \hline {\bf Matrix} & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$ & $\mathbf{\#~Iter.}$ & $\mathbf{Prec.}$ & $\mathbf{\Delta}$ \\ \hline \hline @@ -797,6 +804,7 @@ poli\_large & $8.515s$ & $1.053s$ & $8.09$ torso3 & $31.463s$ & $3.681s$ & $8.55$ & $175$ & $2.69e$-$10$ & $2.66e$-$14$ \\ \hline \end{tabular} +\end{small} \caption{Performances of the parallel GMRES method for solving linear systems associated to sparse banded matrices on a cluster of 24 CPU cores vs. on a cluster of 12 GPUs.} \label{ch12:tab:06}