X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/b7e61e1f68e950462bff7221fe17c38d2ce7b3c0..6e645292c9053655e4e44bbebf1c1eb751a554a6:/BookGPU/Chapters/chapter5/ch5.tex?ds=sidebyside diff --git a/BookGPU/Chapters/chapter5/ch5.tex b/BookGPU/Chapters/chapter5/ch5.tex index 1c5da65..1d3d957 100644 --- a/BookGPU/Chapters/chapter5/ch5.tex +++ b/BookGPU/Chapters/chapter5/ch5.tex @@ -174,16 +174,16 @@ where $u(x,y,t)$ is the unknown heat distribution, $\kappa$ is a heat conductivi u(x,y,t_0) = \sin(\pi x)\,\sin(\pi y), & \qquad (x,y) \in \Omega. \end{align} An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition is given in Figure \ref{ch5:fig:heatsolution}. -\begin{figure}[!htb] +\begin{figure}[!htbp] \begin{center} \setlength\figurewidth{0.3\textwidth} % - \setlength\figureheight{0.32\textwidth} % + \setlength\figureheight{0.3\textwidth} % \subfigure[$t=0.00s$]%{\input{Chapters/chapter5/figures/HeatSolution0.tikz}} -{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}} +{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}} \subfigure[$t=0.05s$]%{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}} -{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}} +{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}} %\subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}} -{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}} +{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}} \end{center} \caption{Discrete solution at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution} \end{figure}