X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/c08513a856650905e4751c8b52c7cbb661368a5f..b1fd489e34a8d46d286a0d271c38cbfb442f511f:/BookGPU/Chapters/chapter11/ch11.tex diff --git a/BookGPU/Chapters/chapter11/ch11.tex b/BookGPU/Chapters/chapter11/ch11.tex index 0aa6e8c..9c16acd 100644 --- a/BookGPU/Chapters/chapter11/ch11.tex +++ b/BookGPU/Chapters/chapter11/ch11.tex @@ -1,5 +1,5 @@ -\chapterauthor{Gleb Beliakov and Shaowu Liu}{School of Information Technology, Deakin University, Burwood 3125, Australia} +\chapterauthor{Gleb Beliakov and Shaowu Liu}{School of Information Technology, Deakin University, Burwood, Australia} %\chapterauthor{Shaowu Liu}{School of Information Technology, Deakin University, Burwood 3125, Australia} @@ -45,7 +45,7 @@ In this work we examine several monotone spline fitting algorithms, and select t The rest of the chapter is organized as follows. Section \ref{ch11:splines} discusses monotone spline interpolation methods and presents two parallel algorithms. Section \ref{ch11:smoothing} deals with the smoothing problem. It presents the isotonic regression problem and discusses the Pool Adjacent Violators (PAV) and MLS algorithms. Combined with monotone spline interpolation, the parallel MLS method makes it possible to build a monotone spline approximation to noisy data entirely on GPU. Section \ref{ch11:conc} concludes. - +\clearpage \section{Monotone splines} \label{ch11:splines} \index{constrained splines} \index{monotonicity}