X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/f3c358c4bba6851fbf01121853d7e21866f01884..0ef0bd886db27bfe31a3d670f78cb435558b5ff7:/BookGPU/Chapters/chapter3/ch3.aux?ds=sidebyside diff --git a/BookGPU/Chapters/chapter3/ch3.aux b/BookGPU/Chapters/chapter3/ch3.aux index 69d76c6..0fb9a0d 100644 --- a/BookGPU/Chapters/chapter3/ch3.aux +++ b/BookGPU/Chapters/chapter3/ch3.aux @@ -4,18 +4,18 @@ \@writefile{toc}{\contentsline {chapter}{\numberline {3}Setting up the environnement.}{25}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\newlabel{algo:memcopy:H2D}{{7}{25}} -\newlabel{algo:memcopy:kernel}{{8}{25}} -\newlabel{algo:memcopy:D2H}{{9}{25}} -\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Global memory management on CPU and GPU sides.\relax }}{25}} -\newlabel{algo:memcopy}{{1}{25}} -\@writefile{toc}{\contentsline {section}{\numberline {3.1}Data transfers, memory management.}{26}} +\@writefile{toc}{\contentsline {section}{\numberline {3.1}Data transfers, memory management.}{25}} +\newlabel{algo:memcopy:H2D}{{7}{26}} +\newlabel{algo:memcopy:kernel}{{8}{26}} +\newlabel{algo:memcopy:D2H}{{9}{26}} +\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces global memory management on CPU and GPU sides\relax }}{26}} +\newlabel{algo:memcopy}{{1}{26}} \newlabel{lst:main1}{{3.1}{27}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.1}Generic main.cu file used to launch CUDA kernels}{27}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.1}generic main.cu file used to launch CUDA kernels}{27}} \newlabel{lst:fkern1}{{3.2}{27}} \@writefile{lol}{\contentsline {lstlisting}{\numberline {3.2}fast\_kernels.cu file featuring one kernel skeleton}{27}} \newlabel{lst:mkfile}{{3.3}{28}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.3}Generic Makefile based on those provided by NV SDK}{28}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.3}generic makefile based on those provided by NVIDIA SDK}{28}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}Performance measurements}{28}} \newlabel{lst:chronos}{{3.4}{28}} \@writefile{lol}{\contentsline {lstlisting}{\numberline {3.4}Time measurement technique using cutil functions}{28}} @@ -27,69 +27,69 @@ \@writefile{toc}{\contentsline {section}{\numberline {4.1}Introduction}{31}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}Median filtering}{32}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}Basic principles}{32}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}A naive implementation}{32}} -\newlabel{img:sap_example_ref}{{4.1(a)}{33}} -\newlabel{sub@img:sap_example_ref}{{(a)}{33}} -\newlabel{img:sap_example_med3}{{4.1(b)}{33}} -\newlabel{sub@img:sap_example_med3}{{(b)}{33}} -\newlabel{img:sap_example_med5}{{4.1(c)}{33}} -\newlabel{sub@img:sap_example_med5}{{(c)}{33}} -\newlabel{img:sap_example_med3_it2}{{4.1(d)}{33}} -\newlabel{sub@img:sap_example_med3_it2}{{(d)}{33}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Example of median filtering, applied to salt \& pepper noise reduction.\relax }}{33}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted by salt and pepper noise of density 0.25}}}{33}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ median filter}}}{33}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ median filter}}}{33}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image denoised by 2 iterations of a $3\times 3$ median filter}}}{33}} -\newlabel{fig:sap_examples}{{4.1}{33}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Example of 5x5 median filtering\relax }}{32}} +\newlabel{fig:median_1}{{4.1}{32}} +\newlabel{algoMedianGeneric}{{2}{33}} +\newlabel{algoMedianGeneric:memcpyH2D}{{1}{33}} +\newlabel{algoMedianGeneric:cptstart}{{3}{33}} +\newlabel{algoMedianGeneric:cptend}{{5}{33}} +\newlabel{algoMedianGeneric:memcpyD2H}{{7}{33}} +\@writefile{loa}{\contentsline {algocf}{\numberline {2}{\ignorespaces generic n$\times $n median filter\relax }}{33}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}A naive implementation}{33}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Illustration of window overlapping in 5x5 median filtering\relax }}{34}} +\newlabel{fig:median_overlap}{{4.2}{34}} \newlabel{lst:medianGeneric}{{4.1}{34}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.1}Generic CUDA kernel achieving median filtering}{34}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Example of 5x5 median filtering\relax }}{35}} -\newlabel{fig:median_1}{{4.2}{35}} -\newlabel{algoMedianGeneric}{{2}{35}} -\newlabel{algoMedianGeneric:memcpyH2D}{{1}{35}} -\newlabel{algoMedianGeneric:cptstart}{{3}{35}} -\newlabel{algoMedianGeneric:cptend}{{5}{35}} -\newlabel{algoMedianGeneric:memcpyD2H}{{7}{35}} -\@writefile{loa}{\contentsline {algocf}{\numberline {2}{\ignorespaces generic n$\times $n median filter\relax }}{35}} -\@writefile{toc}{\contentsline {section}{\numberline {4.3}NVidia GPU tuning recipes}{35}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Illustration of window overlapping in 5x5 median filtering\relax }}{36}} -\newlabel{fig:median_overlap}{{4.3}{36}} -\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Performance results of \texttt {kernel medianR}. \relax }}{36}} -\newlabel{tab:medianHisto1}{{4.1}{36}} -\@writefile{toc}{\contentsline {section}{\numberline {4.4}A 3$\times $3 median filter: using registers }{37}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.1}generic CUDA kernel achieving median filtering}{34}} +\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Performance results of \texttt {kernel medianR}. \relax }}{35}} +\newlabel{tab:medianHisto1}{{4.1}{35}} +\@writefile{toc}{\contentsline {section}{\numberline {4.3}NVIDIA GPU tuning recipes}{35}} +\newlabel{img:sap_example_ref}{{4.3(a)}{36}} +\newlabel{sub@img:sap_example_ref}{{(a)}{36}} +\newlabel{img:sap_example_med3}{{4.3(b)}{36}} +\newlabel{sub@img:sap_example_med3}{{(b)}{36}} +\newlabel{img:sap_example_med5}{{4.3(c)}{36}} +\newlabel{sub@img:sap_example_med5}{{(c)}{36}} +\newlabel{img:sap_example_med3_it2}{{4.3(d)}{36}} +\newlabel{sub@img:sap_example_med3_it2}{{(d)}{36}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Example of median filtering, applied to salt and pepper noise reduction.\relax }}{36}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted by salt and pepper noise of density 0.25}}}{36}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ median filter}}}{36}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ median filter}}}{36}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image denoised by 2 iterations of a $3\times 3$ median filter}}}{36}} +\newlabel{fig:sap_examples}{{4.3}{36}} +\@writefile{toc}{\contentsline {section}{\numberline {4.4}A 3$\times $3 median filter: using registers}{37}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}The simplest way}{37}} \newlabel{lst:kernelMedian3RegTri9}{{4.2}{38}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.2}3$\times $3 median filter kernel using one register per neighborhood pixel and bubble sort}{38}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.2}$3\times 3$ median filter kernel using one register per neighborhood pixel and bubble sort}{38}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Further optimization}{38}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Comparison of pixel throughputs on GPU C2070 and CPU for generic median, 3$\times $3 median register-only and \textit {libJacket}.\relax }}{39}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Comparison of pixel throughputs for CPU generic median, CPU 3$\times $3 median register-only with bubble sort, GPU generic median, GPU 3$\times $3 median register-only with bubble sort, and GPU libJacket.}}{39}} \newlabel{fig:compMedians1}{{4.4}{39}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2.1}Reducing register count }{39}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Forgetful selection with the minimal element register count. Illustration for 3$\times $3 pixel window represented in a row and supposed sorted.\relax }}{40}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Forgetful selection with the minimal element register count. Illustration for $3\times 3$ pixel window represented in a row and supposed sorted.\relax }}{40}} \newlabel{fig:forgetful_selection}{{4.5}{40}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Determination of the Median value by the forgetful selection process, applied to a $3\times 3$ neighborhood window.\relax }}{41}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Determination of the median value by the \textit {forgetful selection} process, applied to a $3\times 3$ neighborhood window.\relax }}{41}} \newlabel{fig:forgetful3}{{4.6}{41}} -\newlabel{lst:medianForget1pix3}{{4.3}{41}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.3}3$\times $3 median filter kernel using the minimum register count of 6 to find the median value by forgetful selection method. The optimal thread block size is 128 on GTX280 and 256 on C2070.}{41}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces First iteration of the $5\times 5$ selection process, with $k_{25}=14$, which shows how Instruction Level Parallelism is maximized by the use of an incomplete sorting network.}}{41}} +\newlabel{fig:bitonic}{{4.7}{41}} +\newlabel{lst:medianForget1pix3}{{4.3}{42}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.3}3$\times $3 median filter kernel using the minimum register count of 6 to find the median value by forgetful selection method. The optimal thread block size is 128 on GTX280 and 256 on C2070}{42}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2.2}More data output per thread}{42}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Illustration of how window overlapping is used to combine 2 pixel selections in a 3$\times $3 median kernel.\relax }}{42}} -\newlabel{fig:median3_overlap}{{4.7}{42}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Illustration of how window overlapping is used to combine 2 pixel selections in a $3\times 3$ median kernel.\relax }}{43}} +\newlabel{fig:median3_overlap}{{4.8}{43}} \newlabel{lst:medianForget2pix3}{{4.4}{43}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.4}3$\times $3 median filter kernel processing 2 output pixel values per thread using combined forgetful selection.}{43}} -\@writefile{toc}{\contentsline {section}{\numberline {4.5}A 5$\times $5 and more median filter }{43}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Comparison of pixel throughput on GPU C2070 for the different 3$\times $3 median kernels.\relax }}{44}} -\newlabel{fig:compMedians2}{{4.8}{44}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.4}$3\times 3$ median filter kernel processing 2 output pixel values per thread using combined forgetful selection}{43}} +\@writefile{toc}{\contentsline {section}{\numberline {4.5}A 5$\times $5 and more median filter }{44}} \newlabel{sec:median5}{{4.5.1}{44}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5.1}A register-only 5$\times $5 median filter }{44}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Reducing register count in a 5$\times $5 register-only median kernel outputting 2 pixels simultaneously.}}{45}} -\newlabel{fig:median5overlap}{{4.9}{45}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces First iteration of the $5\times 5$ selection process, with $k_{25}=14$, which shows how Instruction Level Parallelism is maximized by the use of an incomplete sorting network.}}{45}} -\newlabel{fig:bitonic}{{4.10}{45}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Comparison of pixel throughput on GPU C2070 for the different 3$\times $3 median kernels.\relax }}{45}} +\newlabel{fig:compMedians2}{{4.9}{45}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Reducing register count in a 5$\times $5 register-only median kernel outputting 2 pixels simultaneously.}}{45}} +\newlabel{fig:median5overlap}{{4.10}{45}} \newlabel{lst:medianForget2pix5}{{4.5}{46}} -\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.5}kernel 5$\times $5 median filter processing 2 output pixel values per thread by a combined forgetfull selection.}{46}} +\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.5}kernel 5$\times $5 median filter processing 2 output pixel values per thread by a combined forgetfull selection}{46}} \@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces Performance of various 5$\times $5 median kernel implementations, applied on 4096$\times $4096 pixel image with C2070 GPU card.\relax }}{47}} \newlabel{tab:median5comp}{{4.2}{47}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Fast approximated n$\times $n median filter }{47}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Fast approximated $n\times n$ median filter }{47}} \@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Measured performance of one generic pseudo-separable median kernel applied to 4096$\times $4096 pixel image with various window sizes.\relax }}{48}} \newlabel{tab:medianSeparable}{{4.3}{48}} \newlabel{img:sap_example_ref}{{4.11(a)}{49}} @@ -100,7 +100,7 @@ \newlabel{sub@img:sap_example_sep_med5}{{(c)}{49}} \newlabel{img:sap_example_sep_med3_it2}{{4.11(d)}{49}} \newlabel{sub@img:sap_example_sep_med3_it2}{{(d)}{49}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Example of separable median filtering (smoother), applied to salt \& pepper noise reduction.\relax }}{49}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Example of separable median filtering (smoother), applied to salt and pepper noise reduction.\relax }}{49}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted with by salt and pepper noise of density 0.25}}}{49}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ separable smoother}}}{49}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ separable smoother}}}{49}} @@ -114,7 +114,7 @@ \setcounter{enumi}{3} \setcounter{enumii}{0} \setcounter{enumiii}{0} -\setcounter{enumiv}{11} +\setcounter{enumiv}{12} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{2}