message encryption stage, to be certain that,
even in the worst case scenario, the attacker
will not be able to obtain the message content.
+Doing so makes our steganographic protocol, in a certain extend, an asymmetric one.
-
-In this research work, we thus propose to combine tried and
-tested techniques of signal theory (the adaptive edge detection), coding (the binary embedding), and cryptography
-(encryption of the hidden message) to compute an efficient steganographic
-scheme, which takes into consideration the cover image
-and that can be executed on small devices.
+To sum up, in this research work, well studied and experimented
+techniques of signal processing (adaptive edges detection),
+coding theory (syndrome-treillis codes), and cryptography
+(Blum-Goldwasser encryption protocol) are combined
+to compute an efficient steganographic
+scheme, whose principal characteristics is to take into
+consideration the cover image and to be compatible with small computation resources.
The remainder of this document is organized as follows.
-Section~\ref{sec:ourapproach} presents the details of our steganographic scheme.
-Section~\ref{sec:experiments} shows experiments on image quality, steganalytic evaluation, complexity of our approach
-and compares it to state of the art steganographic schemes.
+Section~\ref{sec:ourapproach} presents the details of the proposed steganographic scheme.
+Section~\ref{sec:experiments} shows experiments on image quality, steganalytic evaluation, complexity of our approach,
+and compares it to the state of the art steganographic schemes.
Finally, concluding notes and future work are given in Section~\ref{sec:concl}.