-The steganalysis quality of our approach has been evaluated through the two
-AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
-and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers.
-Both aim at detecting hidden bits in grayscale natural images and are
-considered as state of the art steganalysers in the spatial domain~\cite{FK12}.
-The former approach is based on a simplified parametric model of natural images.
-Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
-(AUMP) test is designed (theoretically and practically), to check whether
-an image has stego content or not.
-This approach is dedicated to verify whether LSB has been modified or not.
-In the latter, the authors show that the
-machine learning step, which is often
-implemented as a support vector machine,
-can be favorably executed thanks to an ensemble classifier.
+The steganalysis quality of our approach has been evaluated through the % two
+% AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
+% and
+Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalyser.
+Its particularization to spatial domain is
+considered as state of the art steganalysers.
+Features that are embedded into this steganalysis process
+are CCPEV and SPAM features as described
+in~\cite{DBLP:dblp_conf/mediaforensics/KodovskyPF10}.
+They are extracted from the
+set of cover images and the set of training images.
+Next a small
+set of weak classifiers is randomly built,
+each one working on a subspace of all the features.
+The final classifier is constructed by a majority voting
+between the decisions of these individual classifiers.
+
+
+%The former approach is based on a simplified parametric model of natural images.
+% Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
+% (AUMP) test is designed (theoretically and practically), to check whether
+% an image has stego content or not.
+% This approach is dedicated to verify whether LSB has been modified or not.
+% , the authors show that the
+% machine learning step, which is often
+% implemented as a support vector machine,
+% can be favorably executed thanks to an ensemble classifier.