-The steganalysis quality of our approach has been evaluated through the two
-AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
-and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers.
-Both aim at detecting hidden bits in grayscale natural images and are
-considered as state of the art steganalysers in the spatial domain~\cite{FK12}.
-The former approach is based on a simplified parametric model of natural images.
-Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
-(AUMP) test is designed (theoretically and practically), to check whether
-an image has stego content or not.
-This approach is dedicated to verify whether LSB has been modified or not.
-In the latter, the authors show that the
-machine learning step, which is often
-implemented as a support vector machine,
-can be favorably executed thanks to an ensemble classifier.
+%The former approach is based on a simplified parametric model of natural images.
+% Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
+% (AUMP) test is designed (theoretically and practically), to check whether
+% an image has stego content or not.
+% This approach is dedicated to verify whether LSB has been modified or not.
+% , the authors show that the
+% machine learning step, which is often
+% implemented as a support vector machine,
+% can be favorably executed thanks to an ensemble classifier.