]> AND Private Git Repository - canny.git/blobdiff - experiments.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
je sais plus
[canny.git] / experiments.tex
index 2fc8a68527d8156735290d45b82898090e7d4289..aa8a3e94dd8b4c872185249d20ffcedeb6fd4c44 100644 (file)
@@ -50,7 +50,7 @@ If $b$ is 6, these values are respectively equal to
 \hline
 Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR} \\
 \hline
-Embedding &   Fixed & \multicolumn{3}{|c|}{Adaptive} &  \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
+Embedding &   Fixed & \multicolumn{3}{|c|}{Adaptive (about 6.35\%)} &  \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
 \hline
 Rate &   10\% &  + sample &  +STC(7) & +STC(6) &  10\%&6.35\%& 10\%&6.35\%\\ 
 \hline
@@ -88,8 +88,8 @@ into the edge detection.
 Let us focus on the quality of HUGO images: with a given fixed 
 embedding rate (10\%), 
 HUGO always produces images whose quality is higher than the STABYLO's one.
-However our approach always outperforms EAISLSBMR since this one may modify 
-the two least significant bits whereas STABYLO only alter LSB.
+However our approach is always better than EAISLSBMR since this one may modify 
+the two least significant bits.
 
 If we combine \emph{adaptive} and \emph{STC} strategies 
 (which leads to an average embedding rate equal to 6.35\%)
@@ -141,7 +141,7 @@ can be favorably executed thanks to an ensemble classifier.
 \hline
 Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR}\\
 \hline
-Embedding & Fixed &   \multicolumn{3}{|c|}{Adaptive}  & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
+Embedding & Fixed &   \multicolumn{3}{|c|}{Adaptive (about 6.35\%)}  & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
 \hline
 Rate & 10\% &  + sample &   +STC(7) & +STC(6)   & 10\%& 6.35\%& 10\%& 6.35\%\\ 
 \hline