+However, it has been shown that the distinguishing error with LSB embedding is lower than
+the one with some binary embedding~\cite{DBLP:journals/tifs/FillerJF11}.
+We thus propose to take benefit of these optimized embedding, provided they are not too time consuming.
+In the latter, an hybrid edge detector is presented followed by an ad hoc
+embedding.
+The Edge detection is computed by combining fuzzy logic~\cite{Tyan1993}
+and Canny~\cite{Canny:1986:CAE:11274.11275} approaches. The goal of this combination
+is to enlarge the set of modified bits to increase the payload of the data hiding scheme.
+
+
+One can notice that all the previously referenced
+schemes~\cite{Luo:2010:EAI:1824719.1824720,DBLP:journals/eswa/ChenCL10,DBLP:conf/ih/PevnyFB10}
+produce stego contents
+by only considering the payload, not the type of image signal: the higher the payload is,
+the better the approach is said to be.
+Contrarily, we argue that some images should not be taken as a cover because of the nature of their signal.
+Consider for instance a uniformly black image: a very tiny modification of its pixels can be easily detectable.
+The approach we propose is thus to provide a self adaptive algorithm with a high payload, which depends on the cover signal.
+% Message extraction is achieved by computing the same
+% edge detection pixels set for the cover and the stego image.
+% The edge detection algorithm is thus not applied on all the bits of the image,
+% but to exclude the LSBs which are modified.
+
+Finally, even if the steganalysis discipline
+ has done great leaps forward these last years, it is currently impossible to prove rigorously
+that a given hidden message cannot be recovered by an attacker.
+This is why we add to our scheme a reasonable
+message encryption stage, to be certain that,
+even in the worst case scenario, the attacker
+will not be able to obtain the original message content.
+Doing so makes our steganographic protocol, to a certain extend, an asymmetric one.