We restrict experiments to
this set of cover images since this paper is more focused on
the methodology than benchmarking.
-We use the matrices given in table~\ref{table:matrices:H}
-as introduced in~\cite{}, since these ones have experimentally
+
+We use the matrices $\hat{H}$
+generated by the integers given
+in table~\ref{table:matrices:H}
+as introduced in~\cite{FillerJF11}, since these ones have experimentally
be proven to have the best modification efficiency.
+For instance if the rate between the size of message and the size of the host is
+1/4, each number in $\{81, 95, 107, 121\}$ is translated into a binary number
+and each one consitutes thus an column of $\hat{H}$.
\begin{table}
$$
\begin{array}{|l|l|}
-\textrm{rate} & \textrm{matrix generators} \\
-$\frac{1}{2} & \{71,109\}
-$\frac{1}{3} & \{95, 101, 121\}
-$\frac{1}{4} & \{81, 95, 107, 121\}
-$\frac{1}{5} & \{75, 95, 97, 105, 117\}
-$\frac{1}{6} & \{73, 83, 95, 103, 109, 123\}
-$\frac{1}{7} & \{69, 77, 93, 107, 111, 115, 121\}
-$\frac{1}{8} & \{69, 79, 81, 89, 93, 99, 107, 119\}
-$\frac{1}{9} & \{69, 79, 81, 89, 93, 99, 107, 119, 125]
-
+\hline
+\textrm{Rate} & \textrm{Matrix generators} \\
+\hline
+{1}/{2} & \{71,109\}\\
+\hline
+{1}/{3} & \{95, 101, 121\}\\
+\hline
+{1}/{4} & \{81, 95, 107, 121\}\\
+\hline
+{1}/{5} & \{75, 95, 97, 105, 117\}\\
+\hline
+{1}/{6} & \{73, 83, 95, 103, 109, 123\}\\
+\hline
+{1}/{7} & \{69, 77, 93, 107, 111, 115, 121\}\\
+\hline
+{1}/{8} & \{69, 79, 81, 89, 93, 99, 107, 119\}\\
+\hline
+{1}/{9} & \{69, 79, 81, 89, 93, 99, 107, 119, 125\}\\
+\hline
+\end{array}
+$$
+\caption{Matrix Generator for $\hat{H}$ in STC}\label{table:matrices:H}
+\end{table}
Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10}