]> AND Private Git Repository - canny.git/blobdiff - ourapproach.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
complexity
[canny.git] / ourapproach.tex
index e87c1486bc31d3942abf9acd70e48c53077c7733..1b2ee1a619182b8899607356d17db4c7e2d74370 100644 (file)
@@ -8,7 +8,8 @@ The message extraction is then presented  (Sect.~\ref{sub:extract}) and a runnin
 
 The flowcharts given in Fig.~\ref{fig:sch}
 summarize our steganography scheme denoted by
-STABYLO, which stands for STeganography with cAnny, Bbs, binarY embedding at LOw cost.
+STABYLO, which stands for STeganography with 
+Adaptive, Bbs, binarY embedding at LOw cost.
 What follows are successively some details of the inner steps and the flows both inside 
  the embedding stage (Fig.~\ref{fig:sch:emb}) 
 and inside the extraction one (Fig.~\ref{fig:sch:ext}).
@@ -372,35 +373,3 @@ This function allows to emphasize differences between contents.
 
 
 
-\section{Complexity Analysis}\label{sub:complexity}
-This section aims at justifying the leightweight attribute of our approach.
-To be more precise, we compare the complexity of our schemes to the 
-state of the art steganography, namely HUGO~\cite{DBLP:conf/ih/PevnyFB10}.
-
-
-In what folllows, we consider an $n \times n$ square image. 
-First of all, HUGO starts with computing the second order SPAM Features.
-This steps is in  $O(n^2 + 2.343^2)$ due to the calculation 
-of the difference arrays and next of the 686 features (of size 343).
-Next for each pixel, the distortion measure is calculated by +1/-1 modifying
-its value and computing again the SPAM 
-features. Pixels are thus selected according to their ability to provide
-an image whose SPAM features are close to the original one. 
-The algorithm is thus computing a distance between each Feature, 
-which is at least in $O(343)$ and an overall distance between these 
-metrics which is in $O(686)$. Computing the distance is thus in 
-$O(2\time 343^2)$ and this mdification is thus in $O(2\time 343^2 \time n^2)$.
-Ranking these results may be achieved with a insertion sort which is in $2.n^2 \ln(n)$.
-The overall complexity of the pixel selection is thus 
-$O(n^2 +2.343^2 + 2\time 343^2 \time n^2 + 2.n^2 \ln(n))$, \textit{i.e}
-$O(2.n^2(343^2 + \ln(n)))$.
-
-Our edge selection is based on a Canny  Filter, 
-whose complexity is in $O(2n^2.\ln(n))$ thanks to the convolution step
-which can be implemented with FFT.
-The complexity of Hugo is  at least $343^2/\ln{n}$ times higher than our scheme. 
-
-
-
-
-