-$O(n^2 +2.343^2 + 2\times 343^2 \times n^2 + 2.n^2 \ln(n))$, \textit{i.e},
-$O(2.n^2(343^2 + \ln(n)))$.
+$\theta(n^2 +2 \times 343^2 + 2\times 343^2 \times n^2 + 2 \times n^2 \ln(n))$, \textit{i.e},
+$\theta(2 \times n^2(343^2 + \ln(n)))$.
+
+
+
+
+Let us focus now on WOW.
+This scheme starts to compute the residual
+of the cover as a convolution product which is in $\theta(n^2\ln(n^2))$.
+The embedding suitability $\eta_{ij}$ is then computed for each pixel
+$1 \le i,j \le n$ thanks to a convolution product again.
+We thus have a complexity of $\theta(n^2 \times n^2\ln(n^2))$.
+Moreover the suitability is computed for each wavelet level
+detail (HH, HL, LL).
+This distortion computation step is thus in $\theta(6n^4\ln(n))$.
+Finally a norm of these three values is computed for each pixel
+which adds to this complexity the complexity of $\theta(n^2)$.
+To summarize, the complixity is in $\theta(6n^4\ln(n) +n^2)$
+
+What follows details the complexity of the distortion evaluation of the
+UNIWARD scheme. This one is based to a convolution product $W$ of two elements
+of size $n$ and is again in $\theta(n^2 \times n^2\ln(n^2))$ and a sum $D$ of
+these $W$ which is in $\theta(n^2)$.
+This distortion computation step is thus in $\theta(6n^4\ln(n) + n^2)$.
+