]> AND Private Git Repository - canny.git/blobdiff - experiments.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Un peu de globy boulga
[canny.git] / experiments.tex
index 60cce0baf515c9c50f2f9568152dffcf568db2ab..c92062c01027a8f4eed07bcf6fcf9b4e835d9192 100644 (file)
@@ -1,4 +1,4 @@
-For the whole experiment, a set of 500 images is randomly extracted 
+For whole experiments, a set of 500 images is randomly extracted 
 from the database taken from the BOSS contest~\cite{Boss10}. 
 In this set, each cover is a $512\times 512$
 grayscale digital image.
@@ -6,24 +6,22 @@ grayscale digital image.
 
 \subsection{Adaptive Embedding Rate} 
 
-Two strategies have been developed in our scheme with respect to the rate of 
-embedding which is either \emph{adaptive} or \emph{fixed}.
+Two strategies have been developed in our scheme, depending on the embedding rate that is either \emph{adaptive} or \emph{fixed}.
 
 In the former the embedding rate depends on the number of edge pixels.
-The higher it is, the larger is the message length that can be considered.
+The higher it is, the larger is the message length that can be inserted.
 Practically, a set of edge pixels is computed according to the 
-Canny algorithm with high threshold.
+Canny algorithm with an high threshold.
 The message length is thus defined to be the half of this set cardinality.
 In this strategy, two methods are thus applied to extract bits that 
 are modified. The first one is a direct application of the STC algorithm.
-This method is further refered as \emph{adaptive+STC}.
+This method is further referred as \emph{adaptive+STC}.
 The second one randomly choose the subset of pixels to modify by 
 applying the BBS PRNG again. This method is denoted \emph{adaptive+sample}.
 Notice that the rate between 
-available bits  and bit message length is always equal to two.
+available bits  and bit message length is always equal to 2.
 This constraint is indeed induced by the fact that the efficiency 
 of the STC algorithm is unsatisfactory under that threshold.
-
 On our experiments and with the adaptive scheme, 
 the average size of the message that can be embedded is 16445.
 Its corresponds to an  average payload of 6.35\%. 
@@ -37,28 +35,31 @@ This is the classical approach adopted in steganography.
 Practically, the Canny algorithm generates a 
 a set of edge pixels with threshold that is decreasing until its cardinality
 is sufficient. If the set cardinality is more than twice larger than the 
-bit message length an STC step is again applied.
+bit message length, a STC step is again applied.
 Otherwise, pixels are again randomly chosen with BBS.
 
  
 
 \subsection{Image Quality}
 The visual quality of the STABYLO scheme is evaluated in this section.
-Four metrics are computed in these experiments: 
+For the sake of completeness, four metrics are computed in these experiments: 
 the Peak Signal to Noise Ratio (PSNR), 
 the PSNR-HVS-M family~\cite{PSECAL07,psnrhvsm11} , 
-the BIQI~\cite{MB10,biqi11} and 
+the BIQI~\cite{MB10,biqi11}, and 
 the weighted PSNR (wPSNR)~\cite{DBLP:conf/ih/PereiraVMMP01}.
 The first one is widely used but does not take into
-account Human Visual System (HVS).
+account the Human Visual System (HVS).
 The other last ones have been designed to tackle this problem.
 
 \begin{table}
 \begin{center}
 \begin{tabular}{|c|c|c||c|c|}
 \hline
- &   \multicolumn{2}{|c||}{Adaptive} & fixed & HUGO \\
-Embedding rate &   + STC &  + sample & 10\% & 10\%\\ 
+Schemes & \multicolumn{3}{|c|}{STABYLO} & HUGO\\
+\hline
+Embedding &   \multicolumn{2}{|c||}{Adaptive} & Fixed & Fixed \\
+\hline
+Rate &   + STC &  + sample & 10\% & 10\%\\ 
 \hline
 PSNR &  66.55 & 63.48  & 61.86  & 64.65   \\ 
 \hline
@@ -70,22 +71,22 @@ wPSNR & 86.43& 80.59 & 77.47& 83.03\\
 \hline
 \end{tabular}
 \end{center}
-\caption{Quality measures of our steganography approach\label{table:quality}} 
+\caption{Quality Measures of Steganography Approaches\label{table:quality}} 
 \end{table}
 
 Let us give an interpretation of these experiments.
 First of all, the adaptive strategy produces images with lower distortion 
 than the one of images resulting from the 10\% fixed strategy.
 Numerical results are indeed always greater for the former strategy than 
-for the latter, except for the BIQI metrics where differences are not relevent.
+for the latter, except for the BIQI metrics where differences are not relevant.
 These results are not surprising since the adaptive strategy aims at 
 embedding messages whose length is decided according to a higher threshold
 into the edge detection.  
 Let us focus on the quality of HUGO images: with a given fixed 
-embedding rate (10\%) 
+embedding rate (10\%), 
 HUGO always produces images whose quality is higher than the STABYLO's one.
-However, our approach nevertheless provides beter results with the strategy 
-adaptive+STC in a lightweight manner, as motivated in the introduction.      
+However, our approach nevertheless provides better results with the strategy 
+\emph{adaptive+STC} in a lightweight manner, as motivated in the introduction.      
 
 
 Let us now compare the STABYLO approach with other edge based steganography
@@ -93,7 +94,7 @@ schemes with respect to the image quality.
 First of all, the Edge Adaptive
 scheme detailed in~\cite{Luo:2010:EAI:1824719.1824720} 
 executed with a 10\% embedding rate 
-has the same PSNR but a lower wPSNR than our:
+has the same PSNR but a lower wPSNR than ours:
 these two metrics are respectively equal to 61.9 and 68.9. 
 Next both the approaches~\cite{DBLP:journals/eswa/ChenCL10,Chang20101286}
 focus on increasing the payload while the PSNR is acceptable, but do not 
@@ -114,13 +115,13 @@ and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalyse
 Both aims at detecting hidden bits in grayscale natural images and are 
 considered as the state of the art of steganalysers in spatial domain~\cite{FK12}.
 The former approach is based on a simplified parametric model of natural images.
-Parameters are firstly estimated and a adaptive Asymptotically Uniformly Most Powerful
-(AUMP) test is designed (theoretically and practically) to check whether
-a natural image has stego content or not.  
+Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
+(AUMP) test is designed (theoretically and practically), to check whether
+an image has stego content or not.  
 In the latter, the authors show that the 
 machine learning step, (which is often
 implemented as support vector machine)
-can be a favourably executed thanks to an Ensemble Classifiers.
+can be favorably executed thanks to an Ensemble Classifiers.
 
 
 
@@ -130,13 +131,13 @@ can be a favourably executed thanks to an Ensemble Classifiers.
 \hline
 Schemes & \multicolumn{3}{|c|}{STABYLO} & HUGO\\
 \hline
-Embedding rate &  \multicolumn{2}{|c|}{Adaptive} & 10 \% &  10 \%\\
- &   + STC &  + sample &  & \\ 
-
+Embedding &   \multicolumn{2}{|c|}{Adaptive} & Fixed & Fixed \\
+\hline
+Rate &   + STC &  + sample & 10\% & 10\%\\ 
 \hline
-AUMP & 0.39  & & 0.22     &  0.50     \\
+AUMP & 0.39  & 0.33  & 0.22     &  0.50     \\
 \hline
-Ensemble Classifier & 0.47 &  & 0.35     & 0.48     \\
+Ensemble Classifier & 0.47 & 0.44 & 0.35     & 0.48     \\
 
 \hline
 \end{tabular}
@@ -145,7 +146,7 @@ Ensemble Classifier & 0.47 &  & 0.35     & 0.48     \\
 \end{table}
 
 
-Results show that our approach is more easily detectable than HUGO which is
-is the more secure steganography tool, as far we know. However due to its 
+Results show that our approach is more easily detectable than HUGO, which
+is the most secure steganographic tool, as far as we know. However due to its 
 huge number of features integration, it is not lightweight.