-grayscale digital image.
-
-
-\subsection{Adaptive Embedding Rate}
-
-Two strategies have been developed in our scheme, depending on the embedding rate that is either \emph{adaptive} or \emph{fixed}.
-
-In the former the embedding rate depends on the number of edge pixels.
-The higher it is, the larger is the message length that can be inserted.
-Practically, a set of edge pixels is computed according to the
-Canny algorithm with an high threshold.
-The message length is thus defined to be the half of this set cardinality.
-In this strategy, two methods are thus applied to extract bits that
-are modified. The first one is a direct application of the STC algorithm.
-This method is further referred as \emph{adaptive+STC}.
-The second one randomly choose the subset of pixels to modify by
-applying the BBS PRNG again. This method is denoted \emph{adaptive+sample}.
-Notice that the rate between
-available bits and bit message length is always equal to 2.
-This constraint is indeed induced by the fact that the efficiency
-of the STC algorithm is unsatisfactory under that threshold.
-On our experiments and with the adaptive scheme,
-the average size of the message that can be embedded is 16445.
-Its corresponds to an average payload of 6.35\%.
+grayscale digital image in a RAW format.
+We restrict experiments to
+this set of cover images since this paper is more focused on
+the methodology than benchmarking.
+
+We use the matrices $\hat{H}$
+generated by the integers given
+in table~\ref{table:matrices:H}
+as introduced in~\cite{FillerJF11}, since these ones have experimentally
+be proven to have the best modification efficiency.
+For instance if the rate between the size of message and the size of the host is
+1/4, each number in $\{81, 95, 107, 121\}$ is translated into a binary number
+and each one consitutes thus an column of $\hat{H}$.