]> AND Private Git Repository - canny.git/blobdiff - experiments.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
raph
[canny.git] / experiments.tex
index 8337d556b9ac715c1a7515c53a10eb84d173fd8a..aa8a3e94dd8b4c872185249d20ffcedeb6fd4c44 100644 (file)
@@ -7,8 +7,8 @@ this set of cover images since this paper is more focused on
 the methodology than benchmarking.    
 Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10}
 and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}.
 the methodology than benchmarking.    
 Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10}
 and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}.
-The former is the less detectable information hiding tool in spatial domain 
-and the later is the work which is close to ours, as far as we know. 
+The former is the least detectable information hiding tool in spatial domain 
+and the later is the work that is close to ours, as far as we know. 
 
 
 
 
 
 
@@ -23,7 +23,7 @@ the quality analysis and the security of our scheme.
 
  
 
 
  
 
-\subsection{Image Quality}\label{sub:quality}
+\subsection{Image quality}\label{sub:quality}
 The visual quality of the STABYLO scheme is evaluated in this section.
 For the sake of completeness, three metrics are computed in these experiments: 
 the Peak Signal to Noise Ratio (PSNR), 
 The visual quality of the STABYLO scheme is evaluated in this section.
 For the sake of completeness, three metrics are computed in these experiments: 
 the Peak Signal to Noise Ratio (PSNR), 
@@ -46,21 +46,21 @@ If $b$ is 6, these values are respectively equal to
 
 \begin{table*}
 \begin{center}
 
 \begin{table*}
 \begin{center}
-\begin{tabular}{|c|c|c||c|c|c|c|c|}
+\begin{tabular}{|c|c|c||c|c|c|c|c|c|}
 \hline
 \hline
-Schemes & \multicolumn{3}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR} \\
+Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR} \\
 \hline
 \hline
-Embedding &   Fixed & \multicolumn{2}{|c|}{Adaptive} &  \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
+Embedding &   Fixed & \multicolumn{3}{|c|}{Adaptive (about 6.35\%)} &  \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
 \hline
 \hline
-Rate &   10\% &  + sample & + STC  &  10\%&6.35\%& 10\%&6.35\%\\ 
+Rate &   10\% &  + sample &  +STC(7) & +STC(6) &  10\%&6.35\%& 10\%&6.35\%\\ 
 \hline
 \hline
-PSNR & 61.86 & 63.48 &  66.55 (\textbf{-0.8\%})     & 64.65 & {67.08} & 60.8 & 62.9\\ 
+PSNR & 61.86 & 63.48 &  66.55 (\textbf{-0.8\%}) &  63.7  & 64.65 & {67.08} & 60.8 & 62.9\\ 
 \hline
 \hline
-PSNR-HVS-M & 72.9 & 75.39 & 78.6 (\textbf{-0.8\%})    & 76.67 & {79.23} & 61.3  & 63.4\\ 
+PSNR-HVS-M & 72.9 & 75.39 & 78.6 (\textbf{-0.8\%}) & 75.5  & 76.67 & {79.23} & 71.8  & 74.3\\ 
 %\hline
 %BIQI & 28.3 & 28.28 & 28.4 & 28.28 & 28.28 & 28.2 & 28.2\\ 
 \hline
 %\hline
 %BIQI & 28.3 & 28.28 & 28.4 & 28.28 & 28.28 & 28.2 & 28.2\\ 
 \hline
-wPSNR & 77.47 & 80.59 & 86.43(\textbf{-1.6\%})  & 83.03 & {87.8} & 76.7 & 80.6\\ 
+wPSNR & 77.47 & 80.59 & 86.43(\textbf{-1.6\%})& 86.28  & 83.03 & {87.8} & 76.7 & 80.6\\ 
 \hline
 \end{tabular}
 
 \hline
 \end{tabular}
 
@@ -71,29 +71,34 @@ HUGO and STABYLO with  STC+adaptive parameters.
 \end{footnotesize}
 
 \end{center}
 \end{footnotesize}
 
 \end{center}
-\caption{Quality Measures of Steganography Approaches\label{table:quality}}
+\caption{Quality measures of steganography approaches\label{table:quality}}
 \end{table*}
 
 
 
 \end{table*}
 
 
 
-Results are summarized into the Table~\ref{table:quality}.
+Results are summarized in Table~\ref{table:quality}.
 Let us give an interpretation of these experiments.
 First of all, the adaptive strategy produces images with lower distortion 
 than the one of images resulting from the 10\% fixed strategy.
 Numerical results are indeed always greater for the former strategy than 
 Let us give an interpretation of these experiments.
 First of all, the adaptive strategy produces images with lower distortion 
 than the one of images resulting from the 10\% fixed strategy.
 Numerical results are indeed always greater for the former strategy than 
-for the latter.
+for the latter one.
 These results are not surprising since the adaptive strategy aims at 
 embedding messages whose length is decided according to an higher threshold
 into the edge detection.  
 Let us focus on the quality of HUGO images: with a given fixed 
 embedding rate (10\%), 
 HUGO always produces images whose quality is higher than the STABYLO's one.
 These results are not surprising since the adaptive strategy aims at 
 embedding messages whose length is decided according to an higher threshold
 into the edge detection.  
 Let us focus on the quality of HUGO images: with a given fixed 
 embedding rate (10\%), 
 HUGO always produces images whose quality is higher than the STABYLO's one.
-However our approach always outperforms EAISLSBMR since this one may modify 
-the two least significant bits whereas STABYLO only alter LSB.
+However our approach is always better than EAISLSBMR since this one may modify 
+the two least significant bits.
 
 If we combine \emph{adaptive} and \emph{STC} strategies 
 (which leads to an average embedding rate equal to 6.35\%)
 our approach  provides equivalent metrics than HUGO.
 
 If we combine \emph{adaptive} and \emph{STC} strategies 
 (which leads to an average embedding rate equal to 6.35\%)
 our approach  provides equivalent metrics than HUGO.
+In this column STC(7) stands for embedding data in the LSB whereas
+in STC(6), data are hidden in the two last significant bits. 
+
+
+
 The quality variance between HUGO and STABYLO for these parameters
 is given in bold font. It is always close to 1\% which confirms 
 the objective presented in the motivations:
 The quality variance between HUGO and STABYLO for these parameters
 is given in bold font. It is always close to 1\% which confirms 
 the objective presented in the motivations:
@@ -116,7 +121,7 @@ give quality metrics for fixed embedding rates from a large base of images.
 The steganalysis quality of our approach has been evaluated through the two 
 AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
 and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers.
 The steganalysis quality of our approach has been evaluated through the two 
 AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
 and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers.
-Both aims at detecting hidden bits in grayscale natural images and are 
+Both aim at detecting hidden bits in grayscale natural images and are 
 considered as the state of the art of steganalysers in spatial domain~\cite{FK12}.
 The former approach is based on a simplified parametric model of natural images.
 Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
 considered as the state of the art of steganalysers in spatial domain~\cite{FK12}.
 The former approach is based on a simplified parametric model of natural images.
 Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
@@ -125,24 +130,24 @@ an image has stego content or not.
 This approach is dedicated to verify whether LSB has been modified or not.
 In the latter, the authors show that the 
 machine learning step, which is often
 This approach is dedicated to verify whether LSB has been modified or not.
 In the latter, the authors show that the 
 machine learning step, which is often
-implemented as support vector machine,
+implemented as support vector machine,
 can be favorably executed thanks to an ensemble classifier.
 
 
 \begin{table*}
 \begin{center}
 %\begin{small}
 can be favorably executed thanks to an ensemble classifier.
 
 
 \begin{table*}
 \begin{center}
 %\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|c|c|}
+\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
 \hline
 \hline
-Schemes & \multicolumn{3}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR}\\
+Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR}\\
 \hline
 \hline
-Embedding & Fixed &   \multicolumn{2}{|c|}{Adaptive}  & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
+Embedding & Fixed &   \multicolumn{3}{|c|}{Adaptive (about 6.35\%)}  & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
 \hline
 \hline
-Rate & 10\% &  + sample &   + STC   & 10\%& 6.35\%& 10\%& 6.35\%\\ 
+Rate & 10\% &  + sample &   +STC(7) & +STC(6)   & 10\%& 6.35\%& 10\%& 6.35\%\\ 
 \hline
 \hline
-AUMP & 0.22 & 0.33 & 0.39         &  0.50 &  0.50 & 0.49 & 0.50 \\
+AUMP & 0.22 & 0.33 & 0.39  &   0.45    &  0.50 &  0.50 & 0.49 & 0.50 \\
 \hline
 \hline
-Ensemble Classifier & 0.35 & 0.44 & 0.47       & 0.48 &  0.49  &  0.43  & 0.46 \\
+Ensemble Classifier & 0.35 & 0.44 & 0.47 & 0.47     & 0.48 &  0.49  &  0.43  & 0.46 \\
 
 \hline
 \end{tabular}
 
 \hline
 \end{tabular}
@@ -159,6 +164,7 @@ Next, our approach is more easily detectable than HUGO, which
 is the most secure steganographic tool, as far as we know. 
 However by combining \emph{adaptive} and \emph{STC} strategies
 our approach obtains similar results than HUGO ones.
 is the most secure steganographic tool, as far as we know. 
 However by combining \emph{adaptive} and \emph{STC} strategies
 our approach obtains similar results than HUGO ones.
+
 However due to its 
 huge number of features integration, it is not lightweight, which justifies 
 in the authors' opinion the consideration of the proposed method.   
 However due to its 
 huge number of features integration, it is not lightweight, which justifies 
 in the authors' opinion the consideration of the proposed method.