switching the $j-$th component of $x$,
that is, $\overline{x}^j = (x_1 , \ldots, \overline{x_j},\ldots, x_n )$.
It is not hard to see that if $y$ is $\overline{x}^j$, then
switching the $j-$th component of $x$,
that is, $\overline{x}^j = (x_1 , \ldots, \overline{x_j},\ldots, x_n )$.
It is not hard to see that if $y$ is $\overline{x}^j$, then