+edges in images (whose noise has been initially reduced).
+They can be separated in two categories: first and second order detection
+methods on the one hand, and fuzzy detectors on the other hand~\cite{KF11}.
+In first order methods like Sobel, Canny~\cite{Canny:1986:CAE:11274.11275}, \ldots,
+a first-order derivative (gradient magnitude, etc.) is computed
+to search for local maxima, whereas in second order ones, zero crossings in a second-order derivative, like the Laplacian computed from the image,
+are searched in order to find edges.
+As for as fuzzy edge methods are concerned, they are obviously based on fuzzy logic to highlight edges.
+
+Canny filters, on their parts, are an old family of algorithms still remaining a state-of-the-art edge detector. They can be well approximated by first-order derivatives of Gaussians.
+As the Canny algorithm is well known and studied, fast, and implementable
+on many kinds of architectures like FPGAs, smartphones, desktop machines, and
+GPUs, we have chosen this edge detector for illustrative purpose.
+
+\JFC{il faudrait comparer les complexites des algo fuzy and canny}
+
+
+This edge detection is applied on a filtered version of the image given
+as input.
+More precisely, only $b$ most
+significant bits are concerned by this step, where
+the parameter $b$ is practically set with $6$ or $7$.
+If set with the same value $b$, the edge detection returns thus the same
+set of pixels for both the cover and the stego image.
+In our flowcharts, this is represented by ``edgeDetection(b bits)''.
+Then only the 2 LSBs of pixels in the set of edges are returned if $b$ is 6,
+and the LSB of pixels if $b$ is 7.
+
+
+
+
+
+Let $x$ be the sequence of these bits.
+The next section section presents how our scheme
+adapts when the size of $x$ is not sufficient for the message $m$ to embed.
+
+
+
+
+
+
+
+\subsection{Adaptive Embedding Rate}\label{sub:adaptive}
+Two strategies have been developed in our scheme,
+depending on the embedding rate that is either \emph{adaptive} or \emph{fixed}.
+In the former the embedding rate depends on the number of edge pixels.
+The higher it is, the larger the message length that can be inserted is.
+Practically, a set of edge pixels is computed according to the
+Canny algorithm with an high threshold.
+The message length is thus defined to be less than
+half of this set cardinality.
+If $x$ is then to short for $m$, the message is split into sufficient parts
+and a new cover image should be used for the remaining part of the message.
+
+
+In the latter, the embedding rate is defined as a percentage between the
+number of modified pixels and the length of the bit message.
+This is the classical approach adopted in steganography.
+Practically, the Canny algorithm generates
+a set of edge pixels related to a threshold that is decreasing
+until its cardinality
+is sufficient.
+
+
+
+Two methods may further be applied to select bits that
+will be modified.
+The first one randomly chooses the subset of pixels to modify by
+applying the BBS PRNG again. This method is further denoted as to \emph{sample}.
+Once this set is selected, a classical LSB replacement is applied to embed the
+stego content.
+The second method is a direct application of the
+STC algorithm~\cite{DBLP:journals/tifs/FillerJF11}.
+It is further referred to as \emph{STC} and is detailed in the next section.
+