-edges in images.
-The most common ones are filter
-edge detection methods such as Sobel or Canny filters, low order methods such as
-first order and second order ones. These methods are based on gradient or
-Laplace operators and fuzzy edge methods, which are based on fuzzy logic to
-highlight edges.
-
-Of course, all the algorithms have advantages and drawbacks which depend on the
-motivation to highlight edges. Unfortunately unless testing most of the
-algorithms, which would require many times, it is quite difficult to have an
-accurate idea on what would produce such algorithm compared to another. That is
-why we have chosen Canny algorithm which is well known, fast and implementable
-on many kinds of architecture, such as FPGA, smartphone, desktop machines and
-GPU. And of course, we do not pretend that this is the best solution.
-
-In order to be able to compute the same set of edge pixels, we suggest to consider all the bits of the image (cover or stego) without the LSB. With an 8 bits image, only the 7 first bits are considered. In our flowcharts, this is represented by LSB(7 bits Edge Detection).
+edges in images (whose noise has been initially reduced).
+They can be separated in two categories: first and second order detection
+methods on the one hand, and fuzzy detectors on the other hand~\cite{KF11}.
+In first order methods like Sobel, Canny~\cite{Canny:1986:CAE:11274.11275}, \ldots,
+a first-order derivative (gradient magnitude, etc.) is computed
+to search for local maxima, whereas in second order ones, zero crossings in a second-order derivative, like the Laplacian computed from the image,
+are searched in order to find edges.
+As for as fuzzy edge methods are concerned, they are obviously based on fuzzy logic to highlight edges.
+
+Canny filters, on their parts, are an old family of algorithms still remaining a state-of-the-art edge detector. They can be well approximated by first-order derivatives of Gaussians.
+As the Canny algorithm is well known and studied, fast, and implementable
+on many kinds of architectures like FPGAs, smartphones, desktop machines, and
+GPUs, we have chosen this edge detector for illustrative purpose.
+
+This edge detection is applied on a filtered version of the image given
+as input.
+More precisely, only $b$ most
+significant bits are concerned by this step, where
+the parameter $b$ is practically set with $6$ or $7$.
+If set with the same value $b$, the edge detection returns thus the same
+set of pixels for both the cover and the stego image.
+In our flowcharts, this is represented by ``edgeDetection(b bits)''.
+Then only the 2 LSBs of pixels in the set of edges are returned if $b$ is 6,
+and the LSB of pixels if $b$ is 7.
+Let $x$ be the sequence of these bits.
+
+\JFC{il faudrait comparer les complexites des algo fuzy and canny}