-\subsection{Adaptive Embedding Rate}
-
-Two strategies have been developed in our scheme with respect to the rate of
-embedding which is either \emph{ adaptive} or \emph{fixed}.
-
-In the former the embedding rate depends on the number of edge pixels.
-The higher it is, the larger is the message length that can be considered.
-Practically, a set of edge pixels is computed according to the
-Canny algorithm with high threshold.
-The message length is thus defined to be the half of this set cardinality.
-The rate between available bits and bit message length is then more than two.This constraint is indeed induced by the fact that the efficiency
-of the STC algorithm is unsatisfactory under that threshold.
-
-
-In the latter, the embedding rate is defined as a percentage between the
-number of the modified pixels and the length of the bit message.
-This is the classical approach adopted in steganography.
-Practically, the Canny algorithm generates a
-a set of edge pixels with threshold that is decreasing until its cardinality
-is sufficient. If the set cardinality is more than twice larger than the
-bit message length an STC step is again applied.
-Otherwise, pixels are randomly chosen from the set of pixels to build the
-subset with a given size. The BBS PRNG is again applied there.
-
+For all the experiments, the whole set of 10,000 images
+of the BOSS contest~\cite{Boss10} database is taken.
+In this set, each cover is a $512\times 512$
+grayscale digital image in a RAW format.
+We restrict experiments to
+this set of cover images since this paper is more focused on
+the methodology than on benchmarks.
+
+We use the matrices $\hat{H}$
+generated by the integers given
+in Table~\ref{table:matrices:H}
+as introduced in~\cite{FillerJF11}, since these ones have experimentally
+be proven to have the best modification efficiency.
+For instance if the rate between the size of the message and the size of the
+cover vector
+is 1/4, each number in $\{81, 95, 107, 121\}$ is translated into a binary number
+and each one constitutes thus a column of $\hat{H}$.
+
+\begin{table}
+$$
+\begin{array}{|l|l|}
+\hline
+\textrm{Rate} & \textrm{Matrix generators} \\
+\hline
+{1}/{2} & \{71,109\}\\
+\hline
+{1}/{3} & \{95, 101, 121\}\\
+\hline
+{1}/{4} & \{81, 95, 107, 121\}\\
+\hline
+{1}/{5} & \{75, 95, 97, 105, 117\}\\
+\hline
+{1}/{6} & \{73, 83, 95, 103, 109, 123\}\\
+\hline
+{1}/{7} & \{69, 77, 93, 107, 111, 115, 121\}\\
+\hline
+{1}/{8} & \{69, 79, 81, 89, 93, 99, 107, 119\}\\
+\hline
+{1}/{9} & \{69, 79, 81, 89, 93, 99, 107, 119, 125\}\\
+\hline
+\end{array}
+$$
+\caption{Matrix Generator for $\hat{H}$ in STC}\label{table:matrices:H}
+\end{table}
+
+
+Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10}
+and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}.
+The former is the least detectable information hiding tool in spatial domain
+and the latter is the work that is the closest to ours, as far as we know.
+
+
+
+First of all, in our experiments and with the adaptive scheme,
+the average size of the message that can be embedded is 16,445 bits.
+It corresponds to an average payload of 6.35\%.
+The two other tools will then be compared with this payload.
+Sections~\ref{sub:quality} and~\ref{sub:steg} respectively present
+the quality analysis and the security of our scheme.
+
+