+
+% Edge Based Image Steganography schemes
+% already studied~\cite{Luo:2010:EAI:1824719.1824720,DBLP:journals/eswa/ChenCL10,DBLP:conf/ih/PevnyFB10} differ
+% how they select edge pixels, and
+% how they modify these ones.
+
+% First of all, let us discuss about compexity of edge detetction methods.
+% Let then $M$ and $N$ be the dimension of the original image.
+% According to~\cite{Hu:2007:HPE:1282866.1282944},
+% even if the fuzzy logic based edge detection methods~\cite{Tyan1993}
+% have promising results, its complexity is in $C_3 \times O(M \times N)$
+% whereas the complexity on the Canny method~\cite{Canny:1986:CAE:11274.11275}
+% is in $C_1 \times O(M \times N)$ where $C_1 < C_3$.
+% \JFC{Verifier ceci...}
+% In experiments detailled in this article, the Canny method has been retained
+% but the whole approach can be updated to consider
+% the fuzzy logic edge detector.
+
+% Next, following~\cite{Luo:2010:EAI:1824719.1824720}, our scheme automatically
+% modifies Canny parameters to get a sufficiently large set of edge bits: this
+% one is practically enlarged untill its size is at least twice as many larger
+% than the size of embedded message.
+
+
+
+%%RAPH: paragraphe en double :-)
+
+
+
+
+\subsection{Data extraction}\label{sub:extract}
+The message extraction summarized in Fig.~\ref{fig:sch:ext}
+follows the data embedding approach
+since there exists a reverse function for all its steps.
+
+More precisely, the same edge detection is applied on the $b$ first bits to
+produce the sequence $y$ of LSBs.
+If the STC approach has been selected in embedding, the STC reverse
+algorithm is directly executed to retrieve the encrypted message.
+This inverse function takes the $H$ matrix as a parameter.
+Otherwise, \textit{i.e.}, if the \emph{sample} strategy is retained,
+the same random bit selection than in the embedding step
+is executed with the same seed, given as a key.
+Finally, the Blum-Goldwasser decryption function is executed and the original
+message is extracted.
+
+
+\subsection{Running example}\label{sub:xpl}
+In this example, the cover image is Lena,
+which is a $512\times512$ image with 256 grayscale levels.
+The message is the poem Ulalume (E. A. Poe), which is constituted by 104 lines, 667
+words, and 3,754 characters, \textit{i.e.}, 30,032 bits.
+Lena and the first verses are given in Fig.~\ref{fig:lena}.
+
+\begin{figure}
+\begin{center}
+\begin{minipage}{0.49\linewidth}
+\begin{center}
+\includegraphics[scale=0.20]{Lena.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{0.49\linewidth}
+\begin{flushleft}
+\begin{scriptsize}
+The skies they were ashen and sober;\linebreak
+$~$ The leaves they were crisped and sere—\linebreak
+$~$ The leaves they were withering and sere;\linebreak
+It was night in the lonesome October\linebreak
+$~$ Of my most immemorial year;\linebreak
+It was hard by the dim lake of Auber,\linebreak
+$~$ In the misty mid region of Weir—\linebreak
+It was down by the dank tarn of Auber,\linebreak
+$~$ In the ghoul-haunted woodland of Weir.
+\end{scriptsize}
+\end{flushleft}
+\end{minipage}
+\end{center}
+\caption{Cover and message examples} \label{fig:lena}
+\end{figure}
+
+The edge detection returns 18,641 and 18,455 pixels when $b$ is
+respectively 7 and 6. These edges are represented in Figure~\ref{fig:edge}.
+
+
+\begin{figure}[t]
+ \begin{center}
+ \subfloat[$b$ is 7.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{emb.pdf}
+ \includegraphics[scale=0.20]{edge7.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:emb}
+ }%\hfill
+ \subfloat[$b$ is 6.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{rec.pdf}
+ \includegraphics[scale=0.20]{edge6.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:ext}
+ }%\hfill
+ \end{center}
+ \caption{Edge detection wrt $b$}
+ \label{fig:edge}
+\end{figure}
+
+
+
+Only 9,320 bits (resp. 9,227 bits) are available for embedding
+in the former configuration where $b$ is 7 (resp. where $b$ is 6).
+In both cases, about the third part of the poem is hidden into the cover.
+Results with \emph{adaptive+STC} strategy are presented in
+Fig.~\ref{fig:lenastego}.
+
+\begin{figure}[t]
+ \begin{center}
+ \subfloat[$b$ is 7.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{emb.pdf}
+ \includegraphics[scale=0.20]{lena7.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:emb}
+ }%\hfill
+ \subfloat[$b$ is 6.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{rec.pdf}
+ \includegraphics[scale=0.20]{lena6.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:ext}
+ }%\hfill
+ \end{center}
+ \caption{Stego images wrt $b$}
+ \label{fig:lenastego}
+\end{figure}
+
+
+Finally, differences between the original cover and the stego images
+are presented in Fig.~\ref{fig:lenadiff}. For each pair of pixel $X_{ij}$ and $Y_{ij}$ ($X$ and $Y$ being the cover and the stego content respectively),
+the pixel value $V_{ij}$ of the difference is defined with the following map
+$$
+V_{ij}= \left\{
+\begin{array}{rcl}
+0 & \textrm{if} & X_{ij} = Y_{ij} \\
+75 & \textrm{if} & \vert X_{ij} - Y_{ij} \vert = 1 \\
+150 & \textrm{if} & \vert X_{ij} - Y_{ij} \vert = 2 \\
+225 & \textrm{if} & \vert X_{ij} - Y_{ij} \vert = 3
+\end{array}
+\right..
+$$
+This function allows to emphasize differences between contents.
+
+\begin{figure}[t]
+ \begin{center}
+ \subfloat[$b$ is 7.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{emb.pdf}
+ \includegraphics[scale=0.20]{diff7.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:emb}
+ }%\hfill
+ \subfloat[$b$ is 6.]{
+ \begin{minipage}{0.49\linewidth}
+ \begin{center}
+ %\includegraphics[width=5cm]{rec.pdf}
+ \includegraphics[scale=0.20]{diff6.eps}
+ \end{center}
+ \end{minipage}
+ %\label{fig:sch:ext}
+ }%\hfill
+ \end{center}
+ \caption{Differences with Lena's cover wrt $b$}
+ \label{fig:lenadiff}
+\end{figure}