]> AND Private Git Repository - canny.git/blobdiff - ourapproach.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
integration des remarques des reviewer en vert
[canny.git] / ourapproach.tex
index 249e1bed6954d1ce2310b52a3fec6f56efb2823c..534fb29fc23e96d7d6925ad413bdb8243aae41a8 100644 (file)
@@ -48,13 +48,17 @@ Let us first focus on the data embedding.
 
 
 \subsection{Security considerations}\label{sub:bbs}
+\JFC{To provide a self-contained article without any bias, we shortly 
+pressent the retained encryption process.}
 Among the methods of  message encryption/decryption 
 (see~\cite{DBLP:journals/ejisec/FontaineG07} for a survey)
-we implement the Blum-Goldwasser cryptosystem~\cite{Blum:1985:EPP:19478.19501}
+we implement the asymmetric 
+Blum-Goldwasser cryptosystem~\cite{Blum:1985:EPP:19478.19501}
 that is based on the Blum Blum Shub~\cite{DBLP:conf/crypto/ShubBB82} 
 pseudorandom number generator (PRNG) and the 
 XOR binary function.
-It has been proven~\cite{DBLP:conf/crypto/ShubBB82} that this PRNG 
+The main justification of this choice 
+is that it has been proven~\cite{DBLP:conf/crypto/ShubBB82} that this PRNG 
 has the property of cryptographical security, \textit{i.e.}, 
 for any sequence of $L$ output bits $x_i$, $x_{i+1}$, \ldots, $x_{i+L-1}$,
 there is no algorithm, whose time complexity is polynomial  in $L$, and 
@@ -115,13 +119,15 @@ Moreover, to provide edge gradient value,
 the Canny algorithm computes derivatives  
 in the two directions with respect to a mask of size $T$. 
 The higher $T$ is, the coarse the approach is. Practically, 
-$T$ is set with $3$, $3$, or $7$.
+$T$ is set with $3$, $5$, or $7$.
 In our flowcharts, this step is represented by ``Edge Detection(b, T, X)''.
 
 
 Let $x$ be the sequence of these bits. 
 The next  section presents how to adapt our scheme 
-when the size of $x$  is not sufficient for the message $m$ to embed.
+with respect to the size
+of the message $m$ to embed and the size of the cover $x$.
+
 
 
  
@@ -131,12 +137,12 @@ when the size of $x$  is not sufficient for the message $m$ to embed.
 
 \subsection{Adaptive embedding rate}\label{sub:adaptive}
 Two strategies have been developed in our approach, 
-depending on the embedding rate that is either \emph{adaptive} or \emph{fixed}.
+depending on the embedding rate that is either \emph{Adaptive} or \emph{Fixed}.
 In the former the embedding rate depends on the number of edge pixels.
 The higher it is, the larger the message length that can be inserted is.
 Practically, a set of edge pixels is computed according to the 
 Canny algorithm with parameters $b=7$ and $T=3$.
-The message length is thus defined to be less than 
+The message length is thus defined to be lesser than 
 half of this set cardinality.
 If $x$ is too short for $m$, the message is split into sufficient parts
 and a new cover image should be used for the remaining part of the message. 
@@ -147,13 +153,13 @@ This is the classical approach adopted in steganography.
 Practically, the Canny algorithm generates  
 a set of edge pixels related to increasing values of $T$ and 
 until its cardinality
-is sufficient. Even in this situation, our scheme is adapting 
+is sufficient. Even in this situation, our scheme adapts
 its algorithm to meet all the user's requirements. 
 
 
 Once the map of possibly modified pixels is computed, 
 two methods may further be applied to extract bits that 
-are really modified. 
+are really changed. 
 The first one randomly chooses the subset of pixels to modify by 
 applying the BBS PRNG again. This method is further denoted  as a \emph{sample}.
 Once this set is selected, a classical LSB replacement is applied to embed the 
@@ -170,7 +176,7 @@ It  is further referred to as \emph{STC} and is detailed in the next section.
 
 
 
-\subsection{Minimizing distortion with syndrome-trellis codes}\label{sub:stc}
+\subsection{Minimizing distortion with Syndrome-Trellis Codes}\label{sub:stc}
 \input{stc}
 
 
@@ -192,14 +198,26 @@ It  is further referred to as \emph{STC} and is detailed in the next section.
 % but the whole approach can be updated to consider 
 % the fuzzy logic edge detector.   
 
-% Next, following~\cite{Luo:2010:EAI:1824719.1824720}, our scheme automatically
-% modifies Canny parameters to get a sufficiently large set of edge bits: this 
-% one is practically enlarged untill its size is at least twice as many larger 
-% than the size of embedded message.
-
-
-
-%%RAPH: paragraphe en double :-)
+For a given set of parameters, 
+the Canny algorithm returns a numerical value and
+states whether a given pixel is an edge or not.
+In this article, in the Adaptive strategy 
+we consider that all the edge pixels that 
+have been selected by this algorithm have the same
+distortion cost \textit{i.e.} $\rho_X$ is always 1 for these bits. 
+In the Fixed strategy, since pixels that are detected to be edge
+with small values of $T$ (e.g. when $T=3$) 
+are more accurate than these with higher values of $T$,
+we give to STC the following distortion map of the corresponding bits
+$$  
+\rho_X= \left\{ 
+\begin{array}{l}
+1 \textrm{ if an edge for $T=3$} \\
+10 \textrm{ if an edge for $T=5$} \\
+100 \textrm{ if an edge for $T=7$}
+\end{array}
+\right.
+$$.
 
 
 
@@ -210,7 +228,7 @@ follows the data embedding approach
 since there exists a reverse function for all its steps.
 
 More precisely,  let $b$ be the most significant bits and 
-$T$ be the size of the canny mask, both be given as a key.
+$T$ be the size of the Canny mask, both be given as a key.
 Thus, the same edge detection is applied on a stego content $Y$ to 
 produce the sequence $y$ of LSBs. 
 If the STC approach has been selected in embedding, the STC reverse
@@ -302,7 +320,7 @@ So, we choose to modify the same amount of bits (9,320) and keep STC optimizing
 which bits to change among  the 36,910 ones.
 
 In the two cases, about the third part of the poem is hidden into the cover. 
-Results with \emph{adaptive} and \textit{STC} strategies are presented in 
+Results with {Adaptive} and {STC} strategies are presented in 
 Fig.~\ref{fig:lenastego}.
 
 \begin{figure}[t]
@@ -342,10 +360,14 @@ V_{ij}= \left\{
 150 & \textrm{if} &  \vert X_{ij} - Y_{ij} \vert = 2 \\
 225 & \textrm{if} &  \vert X_{ij} - Y_{ij} \vert = 3 
 \end{array}
-\right..
+\right.
 $$
 This function allows to emphasize differences between contents.
-Notice that 
+Notice that since $b$ is 7 in Fig.~\ref{fig:diff7}, the embedding is binary 
+and this image only contains 0 and 75 values.
+Similarly, if $b$ is 6 as in Fig.~\ref{fig:diff6}, the embedding is ternary 
+and the image contains all the values in $\{0,75,150,225\}$.
+
 
 
 \begin{figure}[t]
@@ -374,8 +396,4 @@ Notice that
 \end{figure}
 
 
-Notice that since $b$ is 7 in Fig.~\ref{fig:diff7}, the embedding is binary 
-and this image only contains 0 and 75 values.
-Similarly, when $b$ is 6 as in Fig.~\ref{fig:diff6}, the embedding is ternary 
-and the image contains all the values in $\{0,75,150,225\}$.