-First of all, the same edge detection is applied (on the 7 first bits) to
-get the set of LSBs,
-which is sufficiently large with respect to the message size given as a key.
-Then the STC reverse algorithm is applied to retrieve the encrypted message.
+
+More precisely, the same edge detection is applied on the $b$ first bits to
+produce the sequence $y$ of LSBs.
+If the STC approach has been selected in embedding, the STC reverse
+algorithm is directly executed to retrieve the encrypted message.
+This inverse function takes the $H$ matrix as a parameter.
+Otherwise, \textit{i.e.}, if the \emph{sample} strategy is retained,
+the same random bit selection than in the embedding step
+is executed with the same seed, given as a key.