+\subsection{Security Considerations}
+Among methods of message encryption/decryption
+(see~\cite{DBLP:journals/ejisec/FontaineG07} for a survey)
+we implement the Blum-Goldwasser cryptosystem~\cite{Blum:1985:EPP:19478.19501}
+that is based on the Blum Blum Shub~\cite{DBLP:conf/crypto/ShubBB82}
+pseudorandom number generator (PRNG) and the
+XOR binary function.
+It has been indeed proven~\cite{DBLP:conf/crypto/ShubBB82} that this PRNG
+has the property of cryptographical security, \textit{i.e.},
+for any sequence of $L$ output bits $x_i$, $x_{i+1}$, \ldots, $x_{i+L-1}$,
+there is no algorithm, whose time complexity is polynomial in $L$, and
+which allows to find $x_{i-1}$ and $x_{i+L}$ with a probability greater
+than $1/2$.
+Equivalent formulations of such a property can
+be found. They all lead to the fact that,
+even if the encrypted message is extracted,
+it is impossible to retrieve the original one in
+polynomial time.
+
+Starting thus with a key $k$ and the message \textit{mess} to hide,
+this step computes a message $m$, which is the encrypted version of \textit{mess}.