X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/blobdiff_plain/3c3e9a12f31ac42d0c3e7eb1be25aeafb7f7b3db..b417a74f270da1ad1a8b11552a8508c45cb75085:/experiments.tex?ds=sidebyside diff --git a/experiments.tex b/experiments.tex index aed0505..0c08d69 100644 --- a/experiments.tex +++ b/experiments.tex @@ -3,7 +3,7 @@ of the BOSS contest~\cite{Boss10} database is taken. In this set, each cover is a $512\times 512$ grayscale digital image in a RAW format. We restrict experiments to -this set of cover images since this paper is more focussed on +this set of cover images since this paper is more focused on the methodology than benchmarking. Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10} and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}. @@ -69,22 +69,28 @@ The other ones have been designed to tackle this problem. \hline Schemes & \multicolumn{3}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR} \\ \hline -Embedding & \multicolumn{2}{|c||}{Adaptive} & Fixed & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\ +Embedding & Fixed & \multicolumn{2}{|c|}{Adaptive} & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\ \hline -Rate & + STC & + sample & 10\% & 10\%&6.35\%& 10\%&6.35\%\\ +Rate & 10\% & + sample & + STC & 10\%&6.35\%& 10\%&6.35\%\\ \hline -PSNR & 66.55 (\textbf{-0.8\%}) & 63.48 & 61.86 & 64.65 & {67.08} & 60.8 & 62.9\\ +PSNR & 61.86 & 63.48 & 66.55 (\textbf{-0.8\%}) & 64.65 & {67.08} & 60.8 & 62.9\\ \hline -PSNR-HVS-M & 78.6 (\textbf{-0.8\%}) & 75.39 & 72.9 & 76.67 & {79.23} & 61.3 & 63.4\\ +PSNR-HVS-M & 72.9 & 75.39 & 78.6 (\textbf{-0.8\%}) & 76.67 & {79.23} & 61.3 & 63.4\\ %\hline %BIQI & 28.3 & 28.28 & 28.4 & 28.28 & 28.28 & 28.2 & 28.2\\ \hline -wPSNR & 86.43(\textbf{-1.6\%}) & 80.59 & 77.47& 83.03 & {87.8} & & 80.6\\ +wPSNR & 77.47 & 80.59 & 86.43(\textbf{-1.6\%}) & 83.03 & {87.8} & 76.7 & 80.6\\ \hline \end{tabular} + +\begin{footnotesize} +\vspace{2em} +Variances given in bold font express the quality differences between +HUGO and STABYLO with STC+adaptive parameters. +\end{footnotesize} + \end{center} \caption{Quality Measures of Steganography Approaches\label{table:quality}} -\label{table:quality} \end{table*} @@ -101,7 +107,7 @@ into the edge detection. Let us focus on the quality of HUGO images: with a given fixed embedding rate (10\%), HUGO always produces images whose quality is higher than the STABYLO's one. -However our appraoch always outperforms EAISLSBMR since this one may modify +However our approach always outperforms EAISLSBMR since this one may modify the two least significant bits whereas STABYLO only alter LSB. If we combine \emph{adaptive} and \emph{STC} strategies @@ -126,7 +132,7 @@ give quality metrics for fixed embedding rates from a large base of images. -The quality of our approach has been evaluated through the two +The steganalysis quality of our approach has been evaluated through the two AUMP~\cite{Fillatre:2012:ASL:2333143.2333587} and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers. Both aims at detecting hidden bits in grayscale natural images and are @@ -141,7 +147,6 @@ machine learning step, which is often implemented as support vector machine, can be favorably executed thanks to an ensemble classifier. -%citer le second tableau, comparer avec EAISLSBMR \begin{table*} \begin{center} @@ -150,13 +155,13 @@ can be favorably executed thanks to an ensemble classifier. \hline Schemes & \multicolumn{3}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR}\\ \hline -Embedding & \multicolumn{2}{|c|}{Adaptive} & Fixed & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\ +Embedding & Fixed & \multicolumn{2}{|c|}{Adaptive} & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\ \hline -Rate & + STC & + sample & 10\% & 10\%& 6.35\%& 10\%& 6.35\%\\ +Rate & 10\% & + sample & + STC & 10\%& 6.35\%& 10\%& 6.35\%\\ \hline -AUMP & 0.39 & 0.33 & 0.22 & 0.50 & 0.50 & 0.49 & 0.50 \\ +AUMP & 0.22 & 0.33 & 0.39 & 0.50 & 0.50 & 0.49 & 0.50 \\ \hline -Ensemble Classifier & \textbf{0.47} & 0.44 & 0.35 & 0.48 & 0.49 & 0.43 & 0.46 \\ +Ensemble Classifier & 0.35 & 0.44 & 0.47 & 0.48 & 0.49 & 0.43 & 0.46 \\ \hline \end{tabular} @@ -166,8 +171,14 @@ Ensemble Classifier & \textbf{0.47} & 0.44 & 0.35 & 0.48 & 0.49 & 0.43 & \end{table*} -Results show that our approach is more easily detectable than HUGO, which -is the most secure steganographic tool, as far as we know. However due to its +Results are summarized in Table~\ref{table:steganalyse}. +First of all, STC outperforms the sample strategy for the two steganalysers, as +already noticed in the quality analysis presented in the previous section. +Next, our approach is more easily detectable than HUGO, which +is the most secure steganographic tool, as far as we know. +However by combining \emph{adaptive} and \emph{STC} strategies +our approach obtains similar results than HUGO ones. +However due to its huge number of features integration, it is not lightweight, which justifies in the authors' opinion the consideration of the proposed method.