X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/blobdiff_plain/5e6f9e49a26cec4970434722a595a7b44197120f..24da70a2907152b45f175222de4962951669ac12:/experiments.tex diff --git a/experiments.tex b/experiments.tex index cf8dfa6..b952fae 100644 --- a/experiments.tex +++ b/experiments.tex @@ -1,3 +1,42 @@ + +\subsection{Image Quality} +The visual quality of the STABYLO scheme is evaluated in this section. +Four metrics are computed in these experiments : +the Peak Signal to Noise Ratio (PSNR), +the PSNR-HVS-M familly~\cite{PSECAL07,psnrhvsm11} , +the BIQI~\cite{MB10,biqi11} and +the weigthed PSNR (wPSNR)~\cite{DBLP:conf/ih/PereiraVMMP01}. +The first one is widely used but does not take into +account Human Visual System (HVS). +The other last ones have been designed to tackle this problem. + +\begin{table} +\begin{center} +\begin{tabular}{|c|c|c|} +\hline +Embedding rate & Adaptive +10 \% & \\ +\hline +PSNR & & \\ +\hline +PSNR-HVS-M & 78.6 & 72.9 \\ +\hline +BIQI & 28.3 & 28.4 \\ +\hline +wPSNR & 86.43& 77.47 \\ +\hline +\end{tabular} +\end{center} +\caption{Quality measeures of our steganography approach\label{table:quality}} +\end{table} + + +Compare to the Edge Adpative scheme detailed in~\cite{Luo:2010:EAI:1824719.1824720}, our both wPSNR and PSNR values are always higher than their ones. + +\JFC{comparer aux autres approaches} + + + \subsection{Steganalysis} @@ -15,3 +54,24 @@ In the latter, the authors show that the machine learning step, (which is often implemented as support vector machine) can be a favourably executed thanks to an Ensemble Classifiers. + + + +\begin{table} +\begin{center} +\begin{tabular}{|c|c|c|c|} +Shemes & \multicolumn{2}{|c|}{STABYLO} & HUGO\\ +\hline +Embedding rate & Adaptive & 10 \% & 10 \%\\ +\hline +AUMP & 0.39 & 0.22 & 0.50 \\ +\hline +Ensemble Classifier & & & \\ + +\hline +\end{tabular} +\end{center} +\caption{Steganalysing STABYLO\label{table:steganalyse}} +\end{table} + +