X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/blobdiff_plain/e109e0d899bc233ae4407afe3af6ca03e1afe90a..01e8c9301dc7bf227e7fbe18962c62bcb9cc848f:/ourapproach.tex?ds=inline diff --git a/ourapproach.tex b/ourapproach.tex index ccd297b..4539cf1 100644 --- a/ourapproach.tex +++ b/ourapproach.tex @@ -2,7 +2,7 @@ The flowcharts given in Fig.~\ref{fig:sch} summarize our steganography scheme de STABYLO for STeganography with cAnny, Bbs, binarY embedding at LOw cost. What follows successively details all the inner steps and flow inside the embedding stage (Fig.\ref{fig:sch:emb}) -and inside the extraction one(Fig.~\ref{fig:sch:ext}). +and inside the extraction one (Fig.~\ref{fig:sch:ext}). \begin{figure*}[t] @@ -10,8 +10,8 @@ and inside the extraction one(Fig.~\ref{fig:sch:ext}). \subfloat[Data Embedding.]{ \begin{minipage}{0.49\textwidth} \begin{center} -% \includegraphics[width=5cm]{emb.pdf} - \includegraphics[width=5cm]{emb.ps} + \includegraphics[width=5cm]{emb.pdf} + %\includegraphics[width=5cm]{emb.ps} \end{center} \end{minipage} \label{fig:sch:emb} @@ -19,8 +19,8 @@ and inside the extraction one(Fig.~\ref{fig:sch:ext}). \subfloat[Data Extraction.]{ \begin{minipage}{0.49\textwidth} \begin{center} -% \includegraphics[width=5cm]{rec.pdf} - \includegraphics[width=5cm]{rec.ps} + \includegraphics[width=5cm]{rec.pdf} + %\includegraphics[width=5cm]{rec.ps} \end{center} \end{minipage} \label{fig:sch:ext} @@ -34,11 +34,19 @@ and inside the extraction one(Fig.~\ref{fig:sch:ext}). \subsection{Data Embedding} - +This section describes the main three steps of the STABYLO data embedding +scheme. \subsubsection{Edge Based Image Steganography} + + +Edge Based Image Steganography schemes +already studied~\cite{Luo:2010:EAI:1824719.1824720,DBLP:journals/eswa/ChenCL10,DBLP:conf/ih/PevnyFB10} differ +how they select edge pixels, and +how they modify these ones. + Image Quality: Edge Image Steganography \JFC{Raphael, les fuzzy edge detection sont souvent utilisés. il faudrait comparer les approches en terme de nombre de bits retournés, @@ -59,27 +67,56 @@ why we have chosen canny algorithm which is well known, fast and implementable on many kinds of architecture, such as FPGA, smartphone, desktop machines and GPU. And of course, we do not pretend that this is the best solution. -Presentation des algos de detection de contour -Caractéristiques -Comparaison théoriques, références +First of all, let us discuss about compexity of edge detetction methods. +Let then $M$ and $N$ be the dimension of the original image. +According to~\cite{Hu:2007:HPE:1282866.1282944}, +even if the fuzzy logic based edge detection methods~\cite{Tyan1993} +have promising results, its complexity is in $C_3 \times O(M \times N)$ +whereas the complexity on the Canny method~\cite{Canny:1986:CAE:11274.11275} +is in $C_1 \times O(M \times N)$ where $C_1 < C_3$. +\JFC{Verifier ceci...} +In experiments detailled in this article, the canny method has been retained +but the whole approach can be updated to consider +the fuzzy logic edge detector. -Algo de stegano basé juste sur cela : (pas de bbs, pas de stc, même message). +Next, following~\cite{Luo:2010:EAI:1824719.1824720}, our scheme automatically +modifies canny parameters to get a sufficiently large set of edge bits: this +one is practically enlarged untill its size is at least twice as many larger +than the size of embedded message. -Quels paramètres sont optimaux ? Combinaison ? +\subsubsection{Security Considerations} +Among methods of message encryption/decryption +(see~\cite{DBLP:journals/ejisec/FontaineG07} for a survey) +we implement the Blum-Goldwasser cryptosystem~\cite{Blum:1985:EPP:19478.19501} +which is based on the Blum Blum Shub~\cite{DBLP:conf/crypto/ShubBB82} Pseudo Random Number Generator (PRNG) +for security reasons. +It has been indeed proven~\cite{DBLP:conf/crypto/ShubBB82} that this PRNG +has the cryptographically security property, \textit{i.e.}, +for any sequence $L$ of output bits $x_i$, $x_{i+1}$, \ldots, $x_{i+L-1}$, +there is no algorithm, whose time complexity is polynomial in $L$, and +which allows to find $x_{i-1}$ and $x_{i+L}$ with a probability greater +than $1/2$. +Thus, even if the encrypted message would be extracted, +it would thus be not possible to retrieve the original one in a +polynomial time. -\subsubsection{Security Considerations} -Security aspect: -BBS-based cryptographic version of the message -\subsubsection{Minimizing Distortion with Syndrome-Treillis Codes} +\subsubsection{Minimizing Distortion with Syndrome-Treillis Codes} \input{stc} \subsection{Data Extraction} +Message extraction summarized in Fig.~\ref{fig:sch:ext} follows data embedding +since there exists a reverse function for all its steps. +First of all, the same edge detection is applied to get set, +which is sufficiently large with respect to the message size given as a key. +Then the STC reverse algorithm is applied to retrieve the encrypted message. +Finally, the Blum-Goldwasser decryption function is executed and the original +message is extracted.