X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/blobdiff_plain/f96233fc65ad1523ba849069ed5b7daa8f5ef9b1..03f2db2f776786ee6e9435d3c0f603b248cdd2ae:/complexity.tex?ds=inline diff --git a/complexity.tex b/complexity.tex index 4da4291..304ab32 100644 --- a/complexity.tex +++ b/complexity.tex @@ -1,43 +1,43 @@ This section aims at justifying the lightweight attribute of our approach. To be more precise, we compare the complexity of our schemes to the -state of the art steganography, namely HUGO~\cite{DBLP:conf/ih/PevnyFB10}. + best available steganographic scheme, namely HUGO~\cite{DBLP:conf/ih/PevnyFB10}. In what follows, we consider a $n \times n$ square image. First of all, HUGO starts with computing the second order SPAM Features. -This steps is in $O(n^2 + 2.343^2)$ due to the calculation +This steps is in $O(n^2 + 2\times 343^2)$ due to the calculation of the difference arrays and next of the 686 features (of size 343). Next for each pixel, the distortion measure is calculated by +1/-1 modifying its value and computing again the SPAM features. Pixels are thus selected according to their ability to provide -an image whose SPAM features are close to the original one. -The algorithm is thus computing a distance between each computed feature, -and the original ones -which is at least in $O(343)$ and an overall distance between these -metrics which is in $O(686)$. Computing the distance is thus in +an image whose SPAM features are close to the original ones. +The algorithm thus computes a distance between each feature +and the original ones, +which is at least in $O(343)$, and an overall distance between these +metrics, which is in $O(686)$. Computing the distance is thus in $O(2\times 343^2)$ and this modification is thus in $O(2\times 343^2 \times n^2)$. -Ranking these results may be achieved with an insertion sort which is in +Ranking these results may be achieved with an insertion sort, which is in $2.n^2 \ln(n)$. -The overall complexity of the pixel selection is thus -$O(n^2 +2.343^2 + 2\times 343^2 \times n^2 + 2.n^2 \ln(n))$, \textit{i.e} +The overall complexity of the pixel selection is finally +$O(n^2 +2.343^2 + 2\times 343^2 \times n^2 + 2.n^2 \ln(n))$, \textit{i.e}, $O(2.n^2(343^2 + \ln(n)))$. Our edge selection is based on a Canny Filter. When applied on a -$n \times n$ square image the Noise reduction steps is in $O(5^3 n^2)n$. +$n \times n$ square image, the noise reduction step is in $O(5^3 n^2)$. Next, let $T$ be the size of the canny mask. Computing gradients is in $O(4Tn)$ since derivatives of each direction (vertical or horizontal) are in $O(2Tn)$. Finally, thresholding with hysteresis is in $O(n^2)$. The overall complexity is thus in $O((5^3+4T+1)n^2)$. To summarize, for the embedding map construction, the complexity of Hugo is -dramatically higher than our scheme. +dramatically larger than our scheme. We are then left to express the complexity of the STC algorithm. According to~\cite{DBLP:journals/tifs/FillerJF11}, it is in $O(2^h.n)$ where $h$ is the size of the duplicated -matrix. Its complexity is thus negligeable compared with the embedding map +matrix. Its complexity is thus negligible compared with the embedding map construction. @@ -45,8 +45,7 @@ construction. -Thanks to these complexity result, we claim that STABYLO is lightweight. - +Thanks to these complexity results, we claim that STABYLO is lightweight.