X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/blobdiff_plain/f9ab101f6a209bfd67ee84f3aea5bf5ca2582d9b..457be557d1bb33d5d169605464822243e0ed6232:/experiments.tex?ds=sidebyside diff --git a/experiments.tex b/experiments.tex index aa8a3e9..776a5a5 100644 --- a/experiments.tex +++ b/experiments.tex @@ -1,14 +1,33 @@ -For whole experiments, the whole set of 10000 images +For whole experiments, the whole set of 10,000 images of the BOSS contest~\cite{Boss10} database is taken. In this set, each cover is a $512\times 512$ grayscale digital image in a RAW format. We restrict experiments to this set of cover images since this paper is more focused on the methodology than benchmarking. +We use the matrices given in table~\ref{table:matrices:H} +as introduced in~\cite{}, since these ones have experimentally +be proven to have the best modification efficiency. + +\begin{table} +$$ +\begin{array}{|l|l|} +\textrm{rate} & \textrm{matrix generators} \\ +$\frac{1}{2} & \{71,109\} +$\frac{1}{3} & \{95, 101, 121\} +$\frac{1}{4} & \{81, 95, 107, 121\} +$\frac{1}{5} & \{75, 95, 97, 105, 117\} +$\frac{1}{6} & \{73, 83, 95, 103, 109, 123\} +$\frac{1}{7} & \{69, 77, 93, 107, 111, 115, 121\} +$\frac{1}{8} & \{69, 79, 81, 89, 93, 99, 107, 119\} +$\frac{1}{9} & \{69, 79, 81, 89, 93, 99, 107, 119, 125] + + + Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10} and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}. The former is the least detectable information hiding tool in spatial domain -and the later is the work that is close to ours, as far as we know. +and the latter is the work that is the closest to ours, as far as we know. @@ -16,7 +35,7 @@ First of all, in our experiments and with the adaptive scheme, the average size of the message that can be embedded is 16,445 bits. Its corresponds to an average payload of 6.35\%. The two other tools will then be compared with this payload. -The Sections~\ref{sub:quality} and~\ref{sub:steg} respectively present +Sections~\ref{sub:quality} and~\ref{sub:steg} respectively present the quality analysis and the security of our scheme. @@ -79,7 +98,7 @@ HUGO and STABYLO with STC+adaptive parameters. Results are summarized in Table~\ref{table:quality}. Let us give an interpretation of these experiments. First of all, the adaptive strategy produces images with lower distortion -than the one of images resulting from the 10\% fixed strategy. +than the images resulting from the 10\% fixed strategy. Numerical results are indeed always greater for the former strategy than for the latter one. These results are not surprising since the adaptive strategy aims at @@ -93,7 +112,7 @@ the two least significant bits. If we combine \emph{adaptive} and \emph{STC} strategies (which leads to an average embedding rate equal to 6.35\%) -our approach provides equivalent metrics than HUGO. +our approach provides metrics equivalent to those provided by HUGO. In this column STC(7) stands for embedding data in the LSB whereas in STC(6), data are hidden in the two last significant bits. @@ -122,7 +141,7 @@ The steganalysis quality of our approach has been evaluated through the two AUMP~\cite{Fillatre:2012:ASL:2333143.2333587} and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers. Both aim at detecting hidden bits in grayscale natural images and are -considered as the state of the art of steganalysers in spatial domain~\cite{FK12}. +considered as state of the art steganalysers in the spatial domain~\cite{FK12}. The former approach is based on a simplified parametric model of natural images. Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful (AUMP) test is designed (theoretically and practically), to check whether @@ -163,9 +182,9 @@ already noticed in the quality analysis presented in the previous section. Next, our approach is more easily detectable than HUGO, which is the most secure steganographic tool, as far as we know. However by combining \emph{adaptive} and \emph{STC} strategies -our approach obtains similar results than HUGO ones. +our approach obtains similar results to HUGO ones. However due to its -huge number of features integration, it is not lightweight, which justifies +huge number of integration features, it is not lightweight, which justifies in the authors' opinion the consideration of the proposed method.