From: couchot Date: Fri, 21 Dec 2012 09:47:27 +0000 (+0100) Subject: debut d'experiment X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/canny.git/commitdiff_plain/4516d82b16c946a9e8a9cadd0011616e8a66cc31?ds=inline debut d'experiment --- diff --git a/biblio.bib b/biblio.bib index 8e5c9de..5680580 100644 --- a/biblio.bib +++ b/biblio.bib @@ -1,3 +1,30 @@ +@inproceedings{DBLP:conf/ih/PereiraVMMP01, + author = {Shelby Pereira and + Sviatoslav Voloshynovskiy and + Maribel Madueno and + St{\'e}phane Marchand-Maillet and + Thierry Pun}, + title = {Second Generation Benchmarking and Application Oriented + Evaluation}, + booktitle = {Information Hiding}, + year = {2001}, + pages = {340-353}, + ee = {http://dx.doi.org/10.1007/3-540-45496-9_25}, + crossref = {DBLP:conf/ih/2001}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} +@proceedings{DBLP:conf/ih/2001, + editor = {Ira S. Moskowitz}, + title = {Information Hiding, 4th International Workshop, IHW 2001, + Pittsburgh, PA, USA, April 25-27, 2001, Proceedings}, + booktitle = {Information Hiding}, + publisher = {Springer}, + series = {Lecture Notes in Computer Science}, + volume = {2137}, + year = {2001}, + isbn = {3-540-42733-3}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} @article{Hu:2007:HPE:1282866.1282944, author = {Hu, Liming and Cheng, H. D. and Zhang, Ming}, title = {A high performance edge detector based on fuzzy inference rules}, diff --git a/experiments.tex b/experiments.tex index a79b1d4..40cd93b 100644 --- a/experiments.tex +++ b/experiments.tex @@ -1,18 +1,39 @@ \subsection{Image Quality} The visual quality of the STABYLO scheme is evaluated in this section. -Three metrics are computed in these experiments : +Four metrics are computed in these experiments : the Peak Signal to Noise Ratio (PSNR), -the PSNR-HVS-M~\cite{PSECAL07,psnrhvsm11} and the BIQI~\cite{MB10,biqi11}. +the PSNR-HVS-M familly~\cite{PSECAL07,psnrhvsm11} , +the BIQI~\cite{MB10,biqi11} and +the weigthed PSNR (wPSNR)~\cite{DBLP:conf/ih/PereiraVMMP01}. The first one is widely used but does not take into account Human Visual System (HVS). -The two last ones have been designed to tackle this problem. +The other last ones have been designed to tackle this problem. +\begin{table} +\begin{center} +\begin{tabular}{|c|c|c|} +\hline +Embedding rate & Adaptive +10 \% & \\ +\hline +PSNR & & \\ +\hline +PSNR-HVS-M & 78.6 & 72.9 \\ +\hline +BIQI & 28.3 & 28.4 \\ +\hline +wPSNR & 86.43& 77.47 \\ +\hline +\end{tabular} +\end{center} +\caption{Quality measeures of our steganography approach\label{table:quality}} +\end{table} -biqi = 28.3 -psnr-hvs-m= 78,6 -psnr-hvs= 67.3 +Compare to the Edge Adpative scheme detailed in~\cite{Luo:2010:EAI:1824719.1824720}, our both wPSNR and PSNR values are always higher than their ones. + +\JFC{comparer aux autres approaches} \subsection{Steganalysis} @@ -35,4 +56,22 @@ can be a favourably executed thanks to an Ensemble Classifiers. +\begin{table} +\begin{center} +\begin{tabular}{|c|c|c|c|} +Shemes & \multicolumn{2}{|c|}{STABYLO} & HUGO\\ +\hline +Embedding rate & Adaptive & 10 \% & 10 \%\\ +\hline +AUMP & 0.39 & 0.22 & 0.50 \\ +\hline +Ensemble Classifier & & & \\ + +\hline +\end{tabular} +\end{center} +\caption{Steganalysing STABYLO\label{table:steganalyse}} +\end{table} + + \JFC{Raphael, il faut donner des résultats ici} \ No newline at end of file