-(GeneID\cite{parra2000geneid}). In this section, we consider a new
-method of finding core genes from large amount of chloroplast genomes,
-as a solution of the problem resulting from the method stated in
-section two. This method is based on extracting gene features. A
-general overview of the system is illustrated in Figure \ref{Fig1}.\\
-
-\begin{figure}[H]
+(GeneID \cite{parra2000geneid}). Such annotated genomic data will be
+used to overcome the limitation of the first method described in the
+previous section. In fact, the second method we propose finds core
+genes from large amount of chloroplast genomes through genomic
+features extraction.
+
+Figure~\ref{Fig1} presents an overview of the entire method pipeline.
+More precisely, the second method consists of three
+stages: \textit{Genome annotation}, \textit{Core extraction},
+and \textit{Features Visualization} which highlights the
+relationships. To understand the whole core extraction process, we
+describe briefly each stage below. More details will be given in the
+coming subsections. The method uses as starting point some sequence
+database chosen among the many international databases storing
+nucleotide sequences, like the GenBank at NBCI \cite{Sayers01012011},
+the \textit{EMBL-Bank} \cite{apweiler1985swiss} in Europe
+or \textit{DDBJ} \cite{sugawara2008ddbj} in Japan. Different
+biological tools can analyze and annotate genomes by interacting with
+these databases to align and extract sequences to predict genes. The
+database in our method must be taken from any confident data source
+that stores annotated and/or unannotated chloroplast genomes. We have
+considered the GenBank-NCBI \cite{Sayers01012011} database as sequence
+database: 99~genomes of chloroplasts were retrieved. These genomes
+lie in the eleven type of chloroplast families and Table \ref{Tab2}
+summarizes their distribution in our dataset.
+
+\begin{figure}[h]