+\vspace{-1cm}
+
+Table~\ref{Etime} presents for each method the annotation type,
+execution time, and the number of core genes. We use the following
+notations: \textbf{N} denotes NCBI, while \textbf{D} means DOGMA,
+and \textbf{Seq} is for sequence. The first two {\it Annotation} columns
+represent the algorithm used to annotate chloroplast genomes. The next two ones {\it
+Features} columns mean the kind of gene feature used to extract core
+genes: gene name, gene sequence, or both of them. It can be seen that
+almost all methods need low {\it Execution time} expended in minutes to extract core genes
+from the large set of chloroplast genomes. Only the gene quality method requires
+several days of computation (about 3-4 days) for sequence comparisons. However,
+once the quality genomes are well constructed, it only takes 1.29~minutes to
+extract core gene. Thanks to this low execution times that gave us a privilege to use these
+methods to extract core genes on a personal computer rather than main
+frames or parallel computers. The lowest execution time: 1.52~minutes,
+is obtained with the second method using Dogma annotations. The number
+of {\it Core genes} represents the amount of genes in the last core
+genome. The main goal is to find the maximum core genes that simulate
+biological background of chloroplasts. With NCBI we have 28 genes for
+96 genomes, instead of 10 genes for 97 genomes with
+Dogma. Unfortunately, the biological distribution of genomes with NCBI
+in core tree do not reflect good biological perspective, whereas with
+DOGMA the distribution of genomes is biologically relevant. Some a few genomes maybe destroying core genes due to
+low number of gene intersection. More precisely, \textit{NC\_012568.1 Micromonas pusilla} is the only genome who destroyes the core genome with NCBI
+annotations for both gene features and gene quality methods.
+
+The second important factor is the amount of memory nessecary in each
+methodology. Table \ref{mem} shows the memory usage of each
+method. In this table, the values are presented in megabyte
+unit and \textit{gV} means genevision~file~format. We can notice that
+the level of memory which is used is relatively low for all methods
+and is available on any personal computer. The different values also
+show that the gene features method based on Dogma annotations has the
+more reasonable memory usage, except when extracting core
+sequences. The third method gives the lowest values if we already have
+the quality genomes, otherwise it will consume far more
+memory. Moreover, the amount of memory, which is used by the third method also
+depends on the size of each genome.