-We implemented four algorithms to extract maximum core genes from large amount of chloroplast genomes. Two algorithms used to extract core genes based on NCBI annotation, and the others based on dogma annotation tool. Evolutionary tree generated as a result from each method implementation. In this section, we will present the four methods, and how they can extract maximum core genes?, and how the developed code will generate the evolutionary tree.
-
-\subsection{Extract Core Genes based on Gene Contents}
-
-\subsubsection{Core Genes based on NCBI Annotation}
-The first idea to construct the core genome is based on the extraction of Genes names (as gene presence or absence). For instant, in this stage neither sequence comparison nor new annotation were made, we just want to extract all genes with counts stored in each chloroplast genome, then find the intersection core genes based on gene names. \\
-The pipeline of extracting core genes can summarize in the following steps according to pre-processing method used:\\
-
-\begin{enumerate}
-\item We downloads already annotated chloroplast genomes in the form of fasta coding genes (\emph{i.e.} \textit{exons}).
-\item Extract genes names and apply to solve gene duplication using first method.
-\item Convert fasta file format to geneVision file format to generate ICM.
-\item Calculate ICM matrix to find maximum core \textit{Score}. New core genes for two genomes will generate and a specific \textit{CoreId} will assign to it. This process continue until no elements remain in the matrix.
-\item Evolutionary tree will take place by using all data generated from step 1 and 4. The tree will also display the amount of genes lost from each intersection iteration. A specific excel file will be generated that store all the data in local database.
-\end{enumerate}
-
-There main drawback with this method is genes orthography (e.g two different genes sequences with same gene name). In this case, Gene lost is considered by solving gene duplication based on first method to solve gene duplication.
+We implemented the three algorithms using dell laptop model latitude E6430 with 6 GB of memory, and Intel core i5 processor of 2.5 Ghz$\times 4$ with 3 MB of CPU cash. We built the code using python version 2.7 under ubuntu 12.04 LTS. We also used python packages such as os, Biopython, memory\_profile, re, numpy, time, shutil, and xlsxwriter to extract core genes from large amount of chloroplast genomes. Table \ref{Etime}, show the annotation type, execution time, and the number of core genes for each method:
+
+\begin{center}
+\begin{tiny}
+\begin{table}[H]
+\caption{Type of Annotation, Execution Time, and core genes for each method}\label{Etime}
+\begin{tabular}{p{2.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.5cm}p{0.2cm}}
+\hline\hline
+ & \multicolumn{2}{c}{Annotation} & \multicolumn{2}{c}{Features} & \multicolumn{2}{c}{E. Time} & \multicolumn{2}{c}{C. genes} & \multicolumn{2}{c}{Bad Gen.} \\
+~ & N & D & Name & Seq & N & D & N & D & N & D \\
+\hline
+Gene prediction & $\surd$ & - & - & $\surd$ & 1.7 & - & ? & - & 0 & -\\[0.5ex]
+Gene Features & $\surd$ & $\surd$ & $\surd$ & - & 4.98 & 1.52 & 28 & 10 & 1 & 0\\[0.5ex]
+Gene Quality & $\surd$ & $\surd$ & $\surd$ & $\surd$ & \multicolumn{2}{c}{$\simeq$3 days + 1.29} & \multicolumn{2}{c}{4} & \multicolumn{2}{c}{1}\\[1ex]
+\hline
+\end{tabular}
+\end{table}
+\end{tiny}
+\end{center}
+
+In table \ref{Etime}, we show that all methods need low execution time to finish extracting core genes from large chloroplast genomes except in gene quality method where we need about 3-4 days for sequence comparisons to construct quality genomes then it takes just 1.29 minute to extract core genes. This low execution time give us a privilage to use these methods to extract core genes on a personal comuters rather than main frames or parallel computers. In the table, \textbf{N} means NCBI, \textbf{D} means DOGMA, and \textbf{Seq} means Sequence. Annotation is represent the type of algorithm used to annotate chloroplast genome. We can see that the two last methods used the same annotation sources. Features means the type of gene feature used to extract core genes, and this is done by extracting gene name, gene sequence, or both of them. The execution time is represented the whole time needed to extract core genes in minutes. We can see in the table that the second method specially with DOGMA annotation has the lowest execution time of 1.52 minute. In last method We needs approxemetly three days (this period is depend on the amount of genomes) to finish the operation of extracting quality genomes only, while the execution time will be 1.29 minute if we have quality genomes. The number of core genes is represents the amount of genes in the last core genome. The main goal is to find the maximum core genes that simulate biological background of chloroplasts. With NCBI we have 28 genes for 96 genomes instead of 10 genes with DOGMA for 97 genomes. But the biological distribution of genomes with NCBI in core tree did not reflect good biological perspective. While in the core tree with DOGMA, the distribution of genomes are biologically good. Bad genomes are the number of genomes that destroy core genes because of the low number of gene intersection. \textit{NC\_012568.1 Micromonas pusilla}, is the only genome that observed to destroy the core genome with NCBI based on the method of gene features and in the third method of gene quality. \\
+
+The second important factor is the amount of memory usage in each methodology. Table \ref{mem} show the amounts of memory consumption by each method.
+
+\begin{center}
+\begin{tiny}
+\begin{table}[H]
+\caption{Memory usages in (MB) for each methodology}\label{mem}
+\begin{tabular}{p{2.5cm}p{1.5cm}p{1cm}p{1cm}p{1cm}p{1cm}p{1cm}p{1cm}}
+\hline\hline
+Method& & Load Gen. & Conv. gV & Read gV & ICM & Core tree & Core Seq. \\
+\hline
+Gene prediction & NCBI & 100 & - & - & - & 108 & -\\
+\multirow{2}{*}{Gene Features} & NCBI & 15.4 & 18.9 & 17.5 & 18 & 18 & 28.1\\
+ & DOGMA& 15.3 & 15.3 & 16.8 & 17.8 & 17.9 & 31.2\\
+Gene Quality & ~ & 15.3 & $\le$3G & 16.1 & 17 & 17.1 & 24.4\\
+\hline
+\end{tabular}
+\end{table}
+\end{tiny}
+\end{center}
+
+We used a package from PyPI~(\textit{the Python Package Index}) where located at~ (https://pypi.python.org/pypi) named \textit{Memory\_profile} to extract all the values in table \ref{mem}. In this table, all the values are presented in mega bytes and \textit{gV} means genevision file format. We see that all memory levels in all methods are reletively low and can be available in any personal computer. All memory values shows that the method of gene features based on DOGMA annotation have the more resonable memory values to extract core genome from loading genomes until extracting core sequences. The third method, gives us the lowest values if we already have the quality genomes, but it will consume high memory locations if we do not have them. Also, the amount of memory locations in the third method vary according to the size of each genome.\\