X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/cours-maths-dis.git/blobdiff_plain/8b65de9031d067d9806854c011a513c92dcf113e..86be95127ca8ca59052d395b45375110b70cbf17:/arithmetique/entiersNaturels.tex?ds=inline diff --git a/arithmetique/entiersNaturels.tex b/arithmetique/entiersNaturels.tex index 81ddb5b..4f3126e 100755 --- a/arithmetique/entiersNaturels.tex +++ b/arithmetique/entiersNaturels.tex @@ -64,10 +64,6 @@ On souhaite calculer $S_2(n) = 1^2+2^2+...+n^2$. % \end{Exo} -\begin{Exo} -Montrer que pour tout entier naturel $n$, 3 divise $4^n -1$. -\end{Exo} - \begin{Exo} Soit la suite $(U_n)_{n\in \N}$ définie par $U_n = 3^{2n+1} + 2^{n+2} $. \begin{enumerate} @@ -78,15 +74,21 @@ des multiples de $7$. \end{enumerate} \end{Exo} -% \begin{Exo} -% Soit $(u_n)_{n \in \N}$ une suite réelle telle que pour tout $ n \in \N$, -% $$u_{n+2}-5u_{n+1}+6u_n = 0$$ -% Montrez qu'il existe $\alpha, \beta \in \N$ tels quel pour tout $ n \in \N, u_n = \alpha 3^n + \beta 2^n$. -% \end{Exo} -% \begin{Exo} -% Montrer que $\forall m,n \in \N^*, \forall r \in \N, m^{2r+1}+n^{2r+1}$ est divisible par $m+n$. -% \end{Exo} + +\begin{Exo} +Montrer que pour tout entier naturel $n$, 3 divise $4^n -1$. +\end{Exo} + +\begin{Exo} +Soit $(u_n)_{n \in \N}$ une suite réelle telle que pour tout $ n \in \N$, +$$u_{n+2}-5u_{n+1}+6u_n = 0$$ +Montrez qu'il existe $\alpha, \beta \in \N$ tels quel pour tout $ n \in \N, u_n = \alpha 3^n + \beta 2^n$. +\end{Exo} + +\begin{Exo} +Montrer que $\forall m,n \in \N^*, \forall r \in \N, m^{2r+1}+n^{2r+1}$ est divisible par $m+n$. +\end{Exo} @@ -115,22 +117,6 @@ Un \emph{nombre premier}\index{nombre!premier} est un nombre entier strictement Ainsi, le plus petit nombre premier (et le seul qui soit pair) est 2. \end{Exo} -\begin{Th} -Il existe une infinité de nombres premiers. -\end{Th} - -\begin{Exo}[Nombres premiers en quantité infinie] -Supposons comme hypothèse que l'ensemble des nombres premiers $\{ p_1, p_2, p_3 \ldots p_{n-1}, p_n \}$ est de cardinalité finie $n$. -On construit le nombre $N = p_1. p_2. p_3. \ldots .p_{n-1}. p_n +1$. -\begin{enumerate} -\item Montrer que d'après l'hypothèse, il existe un nombre premier $q$ tel que - $N$ est un multiple de $q$. -\item Montrer cependant que $N$ n'est pas un multiple de $p_1$. Idem pour $p_2$, \ldots $p_n$. -\item En déduire que $q$ est un nombre premier différent de $p_1$, de $p_2$, \ldots de $p_n$. -\item En déduire une contradiction dans l'hypothèse. -\end{enumerate} -\end{Exo} - @@ -142,12 +128,14 @@ On construit le nombre $N = p_1. p_2. p_3. \ldots .p_{n-1}. p_n +1$. + + %\subsection{Décomposition en facteurs premiers} \begin{Def}[Décomposition en facteurs premiers] L'écriture d'un entier $n$ sous la forme $n=a^{\alpha}b^{\beta}c^{\gamma}\ldots$, où \begin{itemize} \item $a$, $b$, $c$, \ldots sont des nombres premiers distincts -deux à deux tels que $a < b < c < ldots$; +deux à deux tels que $a < b < c <\ldots$; \item les exposants $\alpha$, $\beta$, $\gamma$ sont des entiers naturels non nuls; \end{itemize} @@ -167,9 +155,28 @@ La décomposition d'un entier en ses facteurs premiers est unique. \'Ecrivez les nombres 3850 et 1911 sous forme de produits de nombres premiers. \end{Exo} + + + %\noindent Réponses : $2*5^2*7*11$ et $3*7^2*13$. +\begin{Th} +Il existe une infinité de nombres premiers. +\end{Th} + +\begin{Exo}[Nombres premiers en quantité infinie] +Supposons comme hypothèse que l'ensemble des nombres premiers $\{ p_1, p_2, p_3 \ldots p_{n-1}, p_n \}$ est de cardinalité finie $n$. +On construit le nombre $N = p_1. p_2. p_3. \ldots .p_{n-1}. p_n +1$. +\begin{enumerate} +\item Montrer que d'après l'hypothèse, il existe un nombre premier $q$ tel que + $N$ est un multiple de $q$. +\item Montrer cependant que $N$ n'est pas un multiple de $p_1$. Idem pour $p_2$, \ldots $p_n$. +\item En déduire que $q$ est un nombre premier différent de $p_1$, de $p_2$, \ldots de $p_n$. +\item En déduire une contradiction dans l'hypothèse. +\end{enumerate} +\end{Exo} + %\subsection{Relation de divisibilité} @@ -220,9 +227,15 @@ Deux nombres entiers strictement positifs $a$ et $b$ sont dits \emph{premiers en Pour $p \in \N$, on appelle nombres de Fermat les nombres de la forme $F_p = 2^{2^p}+1$. \begin{enumerate} +\item Question préliminaire: montrer que les deux égalités suivantes sont établies: +\begin{enumerate} +\item $x^n- 1 = (x-1)(x^{n-1}+x^{n-2}+\ldots+ x + 1)$ pour tout entier naturel $n$ strictement positif. +\item $x^n+ 1 = (x+1)(x^{n-1}-x^{n-2}+\ldots \pm x \mp 1)$ pour tout entier naturel $n$ impair +\end{enumerate} + \item Montrer que, pour que $2^n+1$ soit premier, il est nécessaire - que $n$ soit une puissance de 2. + que $n$ soit une puissance de 2. \item Pour montrer que ce n'est pas suffisant, vérifier que $F_5$ est divisible par 641. @@ -231,7 +244,7 @@ $F_p = 2^{2^p}+1$. \item En déduire que $F_p$ et $F_{p+k}$ sont premiers entre eux. -%\item En déduire qu'il existe une infinité de nombres premiers. + \end{enumerate} \end{Exo} @@ -428,84 +441,206 @@ On se place dans l'ensemble $\N$. \end{Exo} -\section{Représentation des nombres entiers} +\section{Théorème de Bézout} -\begin{Def}[Principe de la numération de position] -\index{Principe de la numérotation de position} -Il consiste à choisir une base $b$ de numération, et $b$ symboles qui constitueront les chiffres dans la représentation d'un entier positif en base $b$. -Celle-ci s'écrira alors -$$n=n_{p}b^p+n_{p-1}b^{p-1}+\cdots+n_{1}b^1+n_{0}$$ -Cette écriture est abrégée en ${\left(\overline{n_{p}n_{p-1}\ldots n_{0}}\right)}_{b}$. -\end{Def} +On considère deux nombres entiers strictement positifs $a$ et $b$. -En informatique, on utilise couramment les bases 2, 8 et 16. +\begin{Th}[Théorème de Bézout] +\index{théorème!de Bézout} +Il existe un couple d'entiers $u$ et $v$ tels que $au-bv=d$, où $d$ est le PGCD de $a$ et de $b$. +\end{Th} +\begin{Proof} +On peut se ramener au cas où $a \et b=1$. +En effet, si $d>1$, on peut écrire $a=a'd$ et $b=b'd$ avec $a' \et b'=1$; si le théorème est établi dans le cas du PGCD égal à $1$, on peut affirmer l'existence de $u$ et de $v$ tels que $a'u-b'v=1$; en multipliant les deux membres de cette égalité par $d$, on obtient $a'du-b'dv=d$, +soit $au-bv=d$. +Il suffit donc d'établir le théorème dans le cas où $d=1$ ($a$ et $b$ premiers entre eux). Plaçons nous dans $(\Z/b\Z)^*$ et considérons l'application de cet ensemble dans lui-même définie par $x \fc ax$. Essayons de résoudre $ax=ax'$, soit $a(x-x')=0$, soit encore $a(x-x') \equiv 0[b]$, ou finalement $a(x-x')=kb$, avec $k \in \Z$. + +Comme $a\et b=1$, $a$ ne divise pas $b$, donc divise $k$; on peut écrire $k=k'a$, il reste $x-x'=k'b$, donc $x \equiv x'[b]$, donc $x=x'$; finalement $ax=ax' \Imp x=x'$, donc l'application envisagée est injective; comme il s'agit d'un ensemble fini, elle est évidemment aussi surjective, donc il existe $u$ tel que $au=1$, ce qui s'écrit encore $au \equiv 1[b]$, ou encore $au=bv+1$, finalement $au-bv=1$. +\end{Proof} -L'algorithme pour obtenir la représentation en base $b$ d'un entier est : -\begin{enumerate} - \item Effectuer la division euclidienne de cet entier par $b$, division qui donne un premier quotient et un premier reste. - \item Le quotient est à sont tour divisé par $b$ pour donner un second quotient et un second reste, et ainsi de suite jusqu'à obtenir un quotient nul. -\item Les restes successifs (tous strictement inférieurs à $b$), et en commençant par le dernier, constituent la représentation en base $b$ de l'entier donné. -\end{enumerate} +\begin{Rem} +Ce couple n'est pas unique. +\begin{Proof} +En effet, si $(u,v)$ est un couple de Bézout pour $(a,b)$, donc tel que $au-bv=d$, où $d=a\et b$, alors, pout tout $k$ dans $\Z$, $a(u+kb)-b(v+ka)= au-bv+kab-kab=au-bv=d$ aussi. +\end{Proof} +\end{Rem} + + \begin{Exo} -Donner la représentation de 23 en base 2. +Montrez que, si $m$ est multiple de deux nombres premiers entre eux $a$ et $b$, alors $m$ est multiple de $ab$. \end{Exo} +% \noindent Réponse : $1 = aa'+bb'$, donc $m = maa'+mbb'$. Or $m=ax=by$, donc $m = ab(ya'+xb')$. -\begin{Exo}[Numération, changements de base] + +\begin{Exo} \begin{enumerate} -\item Chercher les entiers dont le carré a, en représentation décimale, -le même chiffre pour les dizaines et les unités. -\item On pose $a=2p-1$, $b=2p+1$, $c=2p+3$; trouver l'entier $p$ de manière que $a^2+b^2+c^2$ soit de la forme $\sur{xxxx}_{10}$. -\item L'entier $n$ s'écrit $\sur{341}_{10}$ et $\sur{2331}_a$. Trouver $a$. -\item Montrer que, dans toute base $b$ supérieure ou égale à 3, l'entier qui s'écrit $\sur{11211}_b$ n'est pas premier. -\item Soit $n\geqslant 7$. Donner l'écriture de $(n+1)^4$ en base $n$. +\item Montrez que, si on divise deux entiers naturels $a$ et $b$ par leur pgcd, alors les quotients obtenus sont premiers entre eux. + +\item Réciproquement, montrer que, si les quotients obtenus en divisant $a$ et $b$ par un diviseur commun $d$ sont premiers entre eux, alors $d=\textit{PGCD}(a,b)$. \end{enumerate} \end{Exo} +% \noindent Réponse : Soit $d = \textit{PGCD}(a,b)$, et $q_1$ et $q_2$ les quotients de $a$ et $b$ par $d$. Alors $d = aa'+bb' = d q_1 a' + d q_2 b'$. Donc $1 = q_1 a' + q_2 b'$ : $q_1$ et $q_2$ sont premiers entre eux. La réciproque est du même genre. +\subsection{Algorithme d'Euclide généralisé} -\begin{Exo}[Développement décimal] -On considère le nombre réel $x$ dont le dé\-ve\-lop\-pe\-ment décimal s'écrit $x=0,012\ 345\ 679\ 012\ 345\ 679\ \ldots\ \ldots\ \ldots$ (la séquence $012\ 345\ 679$ est reproduite indéfiniment). Ce développement décimal est périodique, de période 9. -\begin{enumerate} -\item Montrer que $x$ -vérifie une équation de la forme $10^kx=n+x$, où $k$ et $n$ sont -des entiers à déterminer. En résolvant cette équation, -montrer que $x$ est un nombre rationnel, et le mettre sous la forme -$x= \fr pq$ , où $p$ et $q$ sont premiers entre eux. -\item Appliquer -la même méthode au ``nombre" $y$ dont le développement -décimal est $y= 0,999\ 999\ 999\ 999\ \ldots$ (périodique de période -1). Quelle conclusion peut-on en tirer? -\item Démontrer que tout nombre réel dont le développement -décimal est fini ou périodique à partir d'un certain rang -est un nombre rationnel. -\item Réciproquement, on se propose de démontrer que le -développement décimal de tout nombre rationnel est fini ou -périodique à partir d'un certain rang. Pour cela, on -considère un rationnel $x=\fr pq$ , avec $q>0$, $p\in -\Z$, $p$ et $q$ premiers entre eux, et on étudiera successivement -les cas suivants: + + +Pour deux entiers positifs $a$ et $b$, on a vu que l'algorithme d'Euclide s'écrit : $a \et b = b \et r$, où $r$ est le reste dans la division euclidienne de $a$ par $b$. + + +En supposant $a>b$, si on pose $a=r_0$ et $b=r_1$, on définit une famille finie $(r_0,r_1,\ldots,r_k,r_{k+1})$ par $r_i=q_{i+1}r_{i+1}+r_{i+2}$ (c'est-à-dire que $r_{i+2}$ est le reste dans la division euclidienne de $r_i$ par $r_{i+1}$). + + +\noindent Cette famille... \begin{itemize} -\item $x$ est entier (c'est à dire $q=1$). -\item $x$ est rationnel non entier, et $q$ est premier avec 10 (On -pourra montrer que, si $q$ est premier avec 10, il existe un entier -$k$, non nul, tel que $10^k\equiv 1\ [q]$). -\item $x$ est rationnel non entier, mais $q$ n'est pas premier avec 10. +\item est strictement décroissante, +\item est telle que $r_{k+1}=0$, +\item vérifie $r_0 \et r_1 = r_1 \et r_2= \ldots = r_{k-1} \et r_k = r_k \et r_{k+1} = r_k \et 0 = r_k$. +\end{itemize} + +\bigskip + +On remarque que $r_{k-1}$ est un multiple de $r_k$, puisque la division euclidienne de $r_{k-1}$ par $r_k$ s'écrit $r_{k-1}=q_kr_k$. + +Soit $d$ le PGCD de $a$ et de $b$ (évidemment, $d=r_k$), on peut écrire $1 \times r_k-0 \times r_{k-1} = d$ puis $1 \times r_{k-2} - q_{k-1} \times r_{k-1}=d$. + + +D'une manière générale, si $(u,v)$ est un couple de Bézout pour $r_{i+1}$ et $r_{i+2}$, soit $u \cdot r_{i+1}+v \cdot r_{i+2}=d$, comme $r_i=q_{i+1}\cdot r_{i+1} + r_{i+2}$, on a $u\cdot r_{i+1}+v \cdot (r_i-q_{i+1}\cdot r_{i+1})=d$, soit $(u-q_{i+1}\cdot v)\cdot r_{i+1}+v \cdot r_i=d$. + +\subsection{L'algorithme.} +\index{algorithme!d'Euclide!généralisé} +Ceci donne l'idée de construire deux familles par les relations : +\begin{itemize} +\item $u_0=1$, $u_1=0$,$u_{i+2}=u_i-q_{i+1} \cdot u_{i+1}$ +\item $v_0=0$, $v_1=1$, $v_{i+2}=v_i-q_{i+1} \cdot v_{i+1}$. +\end{itemize} + +C'est ce que l'on appelle algorithme d'Euclide généralisé. On a alors $(u_k,v_k,r_k)=(u,v,d)$, $u$ et $v$ tels que $a \cdot u+b \cdot v=d$. + +\begin{Pre} +Pour cela, il suffit de montrer par récurrence que $\qqs i \in +\{0,\ldots,k\}, r_0 \cdot u_i + r_1 \cdot v_i = r_i$. +\begin{itemize} + \item Initialisation de la récurrence : la relation est vraie pour $i=0$, en effet $r_0 \cdot u_0+r_1 \cdot v_0=r_0$, puisque $u_0=1$ et $v_0=0$. +\item Caractère héréditaire de la propriété : en supposant que $i$ est un entier pour lequel $r_0 \cdot u_i + r_1 \cdot v_i = +r_i$ et $r_0 \cdot u_{i+1}+r_1 \cdot v_{i+1}=r_{i+1}$, calculons $r_0 \cdot u_{i+2}+r_1 \cdot v_{i+2}= r_0 \cdot (u_i-q_{i+1} \cdot u_{i+1}) + r_1 \cdot (v_i-q_{i+1} \cdot v_{i+1}) = r_0 \cdot +u_i+r_1 \cdot v_i-q_{i+1}\cdot (r_0 \cdot u_{i+1}+r_1 \cdot +v_{i+1})=r_i-q_{i+1}\cdot r_{i+1}=r_{i+2}$. \end{itemize} +\end{Pre} + + +\subsection{Exemple.} + +Illustrons la mise en \oe{}uvre de cet algorithme... + +\begin{Ex} +Soit à obtenir un couple de Bézout pour (23,17) :\vskip 10pt +\begin{center}\begin{tabular}{c c c c} +(23,1,0) & (17,0,1) & $\longrightarrow$ & $q=1$ \\ +(17,0,1) & (6,1,-1) & $\longrightarrow$ & $q=2$ \\ +(6,1,-1) & (5,-2,3) & $\longrightarrow$ & $q=1$ \\ +(5,-2,3) & (1,3,-4) & $\longrightarrow$ & $q=5$ \\ +(1,3,-4) & (0,-17,23) & $\longrightarrow$ & FIN +\end{tabular}\end{center}\vskip 10pt +On a bien $3 \times 23-4 \times 17=1$.\psaut +\end{Ex} + +\begin{Rem} +Il est possible d'obtenir -1 (ou $-d$ en général) comme résultat, donc $au-bv=-1$, cela dépend de la parité du nombre d'itérations effectuées dans l'algorithme précédent. + +Ce n'est pas un résultat faux, puisqu'alors $bv-au=1$ et qu'on a quand même un couple de Bézout pour $(b,a)$. + +S'il est nécessaire d'obtenir un couple $(u,v)$ tel que $au-bv=1$ +et où $a$ et $b$ figurent dans cet ordre, et que l'algorithme a fourni un couple $(u',v')$ tel que $bv'-au'=1$, il suffit de prendre $u=b-u'$ et $v=a-v'$ et, dans ces conditions $au-bv=a(b-u')-b(a-v')= ab -au' -ab +bv'=bv'-au'=1$. +\end{Rem} + +\begin{Exo} +Exprimer $\textit{PGCD}(1330,602)$ comme combinaison à coefficients entiers des nombres 1330 et 602. +\end{Exo} + + + +\begin{Th}[Théorème de Gauss] +Soient $a$, $b$ et $c$ trois entiers naturel non nuls. +Si $a$ divise le produit $bc$ et si $a$ est premier avec $b$, +alors $a$ divise $c$. +\end{Th} + + +\begin{Exo} +L'objectif est de résoudre l'équation $(E)$ d'inconnues $x$ et $y$ +$405x -120y =15$. +\begin{enumerate} +\item Trouver le pgcd de 405 et 120 à l'aide de l'algorithme d'Euclide. +\item En déduire une solution particulière de cette équation. +\item En utilisant la solution particulière, montrer que $(E)$ est + équivalente à $27(x-3) = 8(y-10)$. +\item Utiliser le théorème de Gauss pour montrer que + l'ensemble solution de $(E)$ est $\{(8k+3;27k+10)| k \in \Z\}$. +\end{enumerate} +\end{Exo} + +\begin{Exo} + On considère l'équation $\frac{x}{9}-\frac{y}{4}=3$ où $x$ et $y$ sont des entiers naturels. + \begin{enumerate} +\item Montrer que cela implique qu'il existe $k \in \N$ tel que + $x= 9(k+ 3)$ et $y=4k$. +\item Démontrer que le PGCD de $x$ et $y$ ne peut être qu’un diviseur de 108. +\item Soit $m$ le ppcm de $x$ et de $y$. + On envisage la décomposition de $m$ en facteurs premiers. + Trouver l'ensemble des entiers naturel $k$ pour que + \begin{enumerate} + \item $m$ ne contienne pas le facteur 2. + \item $m$ contienne le facteur 2 ou le facteur $2^2$. +\item $m$ ne contienne pas le facteur 3. +\item $m$ contienne le facteur 3, ou le facteur $3^2$, ou le facteur $3^3$. \end{enumerate} +\item Comment faut-il choisir $x$ et $y$ de telle façon que + l’on ait $\textit{PGCD}(x,y) = 18$? +\end{enumerate} +\end{Exo} +\begin{Exo} +\begin{enumerate} +\item Décomposer 319 en facteurs premiers. + +\item Démontrer que si $x$ et $y$ sont deux entiers + naturels premiers entre eux, il en est de même pour les + nombres $3x + 5y$ et $x + 2y$. +\item Résoudre dans $\Z^2$ le système d’inconnues $a$ et $b$: +$$ +\left\{ +\begin{array}{rcl} +(3a +5b)(a+2b) &= & 1276\\ +ab & = & 2m +\textrm{ tel que $m$ est le PPCM de $a$ et $b$. } +\end{array} +\right. +$$ +\end{enumerate} \end{Exo} +\begin{Exo} +Au 8° siècle, un groupe composé d’hommes et +de femmes a dépensé 100 pièces de monnaie dans une +auberge. +Les hommes ont dépensé 8 pièces chacun et les femmes 5 +pièces chacune. Combien pouvait-il y +avoir d’hommes et de femmes dans le groupe? +\end{Exo} \section{Arithmétique modulo $n$} @@ -723,11 +858,92 @@ Quel est le plus petit nombre de pièces d'or qu'il espère lorsqu'il décide d' \begin{Exo} -Un nombre \og pseudo-premier de base $b$ \fg{}\index{pseudo-premier} est un entier naturel non premier $p$ tel que $(b^p-b) mod p = 0$. +Un nombre \og pseudo-premier de base $b$ \fg{}\index{pseudo-premier} est un entier naturel non premier $p$ tel que $(b^p-b) \mod p = 0$. Vérifier que 561 est pseudo-premier de base 3 et que 341 est pseudo-premier de base 2. \end{Exo} + +\section{Représentation des nombres entiers} + + + +\begin{Def}[Principe de la numération de position] +\index{Principe de la numérotation de position} +Il consiste à choisir une base $b$ de numération, et $b$ symboles qui constitueront les chiffres dans la représentation d'un entier positif en base $b$. +Celle-ci s'écrira alors +$$n=n_{p}b^p+n_{p-1}b^{p-1}+\cdots+n_{1}b^1+n_{0}$$ + +Cette écriture est abrégée en ${\left(\overline{n_{p}n_{p-1}\ldots n_{0}}\right)}_{b}$. +\end{Def} + +En informatique, on utilise couramment les bases 2, 8 et 16. + + + + + +L'algorithme pour obtenir la représentation en base $b$ d'un entier est : + +\begin{enumerate} + \item Effectuer la division euclidienne de cet entier par $b$, division qui donne un premier quotient et un premier reste. + \item Le quotient est à sont tour divisé par $b$ pour donner un second quotient et un second reste, et ainsi de suite jusqu'à obtenir un quotient nul. +\item Les restes successifs (tous strictement inférieurs à $b$), et en commençant par le dernier, constituent la représentation en base $b$ de l'entier donné. +\end{enumerate} + +\begin{Exo} +Donner la représentation de 23 en base 2. +\end{Exo} + + + +\begin{Exo}[Numération, changements de base] +\begin{enumerate} +\item Chercher les entiers dont le carré a, en représentation décimale, +le même chiffre pour les dizaines et les unités. +\item On pose $a=2p-1$, $b=2p+1$, $c=2p+3$; trouver l'entier $p$ de manière que $a^2+b^2+c^2$ soit de la forme $\sur{xxxx}_{10}$. +\item L'entier $n$ s'écrit $\sur{341}_{10}$ et $\sur{2331}_a$. Trouver $a$. +\item Montrer que, dans toute base $b$ supérieure ou égale à 3, l'entier qui s'écrit $\sur{11211}_b$ n'est pas premier. +\item Soit $n\geqslant 7$. Donner l'écriture de $(n+1)^4$ en base $n$. +\end{enumerate} +\end{Exo} + + + +\begin{Exo}[Développement décimal] +On considère le nombre réel $x$ dont le dé\-ve\-lop\-pe\-ment décimal s'écrit $x=0,012\ 345\ 679\ 012\ 345\ 679\ \ldots\ \ldots\ \ldots$ (la séquence $012\ 345\ 679$ est reproduite indéfiniment). Ce développement décimal est périodique, de période 9. +\begin{enumerate} +\item Montrer que $x$ +vérifie une équation de la forme $10^kx=n+x$, où $k$ et $n$ sont +des entiers à déterminer. En résolvant cette équation, +montrer que $x$ est un nombre rationnel, et le mettre sous la forme +$x= \fr pq$ , où $p$ et $q$ sont premiers entre eux. +\item Appliquer +la même méthode au ``nombre" $y$ dont le développement +décimal est $y= 0,999\ 999\ 999\ 999\ \ldots$ (périodique de période +1). Quelle conclusion peut-on en tirer? +\item Démontrer que tout nombre réel dont le développement +décimal est fini ou périodique à partir d'un certain rang +est un nombre rationnel. +\item Réciproquement, on se propose de démontrer que le +développement décimal de tout nombre rationnel est fini ou +périodique à partir d'un certain rang. Pour cela, on +considère un rationnel $x=\fr pq$ , avec $q>0$, $p\in +\Z$, $p$ et $q$ premiers entre eux, et on étudiera successivement +les cas suivants: +\begin{itemize} +\item $x$ est entier (c'est à dire $q=1$). +\item $x$ est rationnel non entier, et $q$ est premier avec 10 (On +pourra montrer que, si $q$ est premier avec 10, il existe un entier +$k$, non nul, tel que $10^k\equiv 1\ [q]$). +\item $x$ est rationnel non entier, mais $q$ n'est pas premier avec 10. +\end{itemize} +\end{enumerate} + +\end{Exo} + + + \section{Arithmétique en informatique} @@ -924,160 +1140,4 @@ Opération binaire & Entiers non signés & Entiers signés \\ \end{tabular} \end{center} \end{Ex} - - - - - - -\section{Théorème de Bézout} - - -On considère deux nombres entiers strictement positifs $a$ et $b$. - -\begin{Th}[Théorème de Bézout] -\index{théorème!de Bézout} -Il existe un couple d'entiers $u$ et $v$ tels que $au-bv=d$, où $d$ est le PGCD de $a$ et de $b$. -\end{Th} - -\begin{Proof} -On peut se ramener au cas où $a \et b=1$. - -En effet, si $d>1$, on peut écrire $a=a'd$ et $b=b'd$ avec $a' \et b'=1$; si le théorème est établi dans le cas du PGCD égal à $1$, on peut affirmer l'existence de $u$ et de $v$ tels que $a'u-b'v=1$; en multipliant les deux membres de cette égalité par $d$, on obtient $a'du-b'dv=d$, -soit $au-bv=d$. - -Il suffit donc d'établir le théorème dans le cas où $d=1$ ($a$ et $b$ premiers entre eux). Plaçons nous dans $(\Z/b\Z)^*$ et considérons l'application de cet ensemble dans lui-même définie par $x \fc ax$. Essayons de résoudre $ax=ax'$, soit $a(x-x')=0$, soit encore $a(x-x') \equiv 0[b]$, ou finalement $a(x-x')=kb$, avec $k \in \Z$. - -Comme $a\et b=1$, $a$ ne divise pas $b$, donc divise $k$; on peut écrire $k=k'a$, il reste $x-x'=k'b$, donc $x \equiv x'[b]$, donc $x=x'$; finalement $ax=ax' \Imp x=x'$, donc l'application envisagée est injective; comme il s'agit d'un ensemble fini, elle est évidemment aussi surjective, donc il existe $u$ tel que $au=1$, ce qui s'écrit encore $au \equiv 1[b]$, ou encore $au=bv+1$, finalement $au-bv=1$. -\end{Proof} - - - -\begin{Rem} -Ce couple n'est pas unique. -\begin{Proof} -En effet, si $(u,v)$ est un couple de Bézout pour $(a,b)$, donc tel que $au-bv=d$, où $d=a\et b$, alors, pout tout $k$ dans $\Z$, $a(u+kb)-b(v+ka)= au-bv+kab-kab=au-bv=d$ aussi. -\end{Proof} -\end{Rem} - - - -\begin{Exo} -Montrez que, si $m$ est multiple de deux nombres premiers entre eux $a$ et $b$, alors $m$ est multiple de $ab$. -\end{Exo} - -\noindent Réponse : $1 = aa'+bb'$, donc $m = maa'+mbb'$. Or $m=ax=by$, donc $m = ab(ya'+xb')$. - - - -\begin{Exo} -Montrez que, si on divise deux entiers naturels $a$ et $b$ par leur pgcd, alors les quotients obtenus sont premiers entre eux. - -Réciproquement, montrer que, si les quotients obtenus en divisant $a$ et $b$ par un diviseur commun $d$ sont premiers entre eux, alors $d=pgcd(a,b)$. -\end{Exo} - -\noindent Réponse : Soit $d = \textit{PGCD}(a,b)$, et $q_1$ et $q_2$ les quotients de $a$ et $b$ par $d$. Alors $d = aa'+bb' = d q_1 a' + d q_2 b'$. Donc $1 = q_1 a' + q_2 b'$ : $q_1$ et $q_2$ sont premiers entre eux. La réciproque est du même genre. - - - -\subsection{Algorithme d'Euclide généralisé} - - - -Pour deux entiers positifs $a$ et $b$, on a vu que l'algorithme d'Euclide s'écrit : $a \et b = b \et r$, où $r$ est le reste dans la division euclidienne de $a$ par $b$. - - -En supposant $a>b$, si on pose $a=r_0$ et $b=r_1$, on définit une famille finie $(r_0,r_1,\ldots,r_k,r_{k+1})$ par $r_i=q_{i+1}r_{i+1}+r_{i+2}$ (c'est-à-dire que $r_{i+2}$ est le reste dans la division euclidienne de $r_i$ par $r_{i+1}$). - - -\noindent Cette famille... -\begin{itemize} -\item est strictement décroissante, -\item est telle que $r_{k+1}=0$, -\item vérifie $r_0 \et r_1 = r_1 \et r_2= \ldots = r_{k-1} \et r_k = r_k \et r_{k+1} = r_k \et 0 = r_k$. -\end{itemize} - -\bigskip - -On remarque que $r_{k-1}$ est un multiple de $r_k$, puisque la division euclidienne de $r_{k-1}$ par $r_k$ s'écrit $r_{k-1}=q_kr_k$. - -Soit $d$ le PGCD de $a$ et de $b$ (évidemment, $d=r_k$), on peut écrire $1 \times r_k-0 \times r_{k-1} = d$ puis $1 \times r_{k-2} - q_{k-1} \times r_{k-1}=d$. - - -D'une manière générale, si $(u,v)$ est un couple de Bézout pour $r_{i+1}$ et $r_{i+2}$, soit $u \cdot r_{i+1}+v \cdot r_{i+2}=d$, comme $r_i=q_{i+1}\cdot r_{i+1} + r_{i+2}$, on a $u\cdot r_{i+1}+v \cdot (r_i-q_{i+1}\cdot r_{i+1})=d$, soit $(u-q_{i+1}\cdot v)\cdot r_{i+1}+v \cdot r_i=d$. - -\subsection{L'algorithme.} -\index{algorithme!d'Euclide!généralisé} -Ceci donne l'idée de construire deux familles par les relations : -\begin{itemize} -\item $u_0=1$, $u_1=0$,$u_{i+2}=u_i-q_{i+1} \cdot u_{i+1}$ -\item $v_0=0$, $v_1=1$, $v_{i+2}=v_i-q_{i+1} \cdot v_{i+1}$. -\end{itemize} - -C'est ce que l'on appelle algorithme d'Euclide généralisé. On a alors $(u_k,v_k,r_k)=(u,v,d)$, $u$ et $v$ tels que $a \cdot u+b \cdot v=d$. - -\begin{Pre} -Pour cela, il suffit de montrer par récurrence que $\qqs i \in -\{0,\ldots,k\}, r_0 \cdot u_i + r_1 \cdot v_i = r_i$. -\begin{itemize} - \item Initialisation de la récurrence : la relation est vraie pour $i=0$, en effet $r_0 \cdot u_0+r_1 \cdot v_0=r_0$, puisque $u_0=1$ et $v_0=0$. -\item Caractère héréditaire de la propriété : en supposant que $i$ est un entier pour lequel $r_0 \cdot u_i + r_1 \cdot v_i = -r_i$ et $r_0 \cdot u_{i+1}+r_1 \cdot v_{i+1}=r_{i+1}$, calculons $r_0 \cdot u_{i+2}+r_1 \cdot v_{i+2}= r_0 \cdot (u_i-q_{i+1} \cdot u_{i+1}) + r_1 \cdot (v_i-q_{i+1} \cdot v_{i+1}) = r_0 \cdot -u_i+r_1 \cdot v_i-q_{i+1}\cdot (r_0 \cdot u_{i+1}+r_1 \cdot -v_{i+1})=r_i-q_{i+1}\cdot r_{i+1}=r_{i+2}$. -\end{itemize} -\end{Pre} - - -\subsection{Exemple.} - -Illustrons la mise en \oe{}uvre de cet algorithme... - -\begin{Ex} -Soit à obtenir un couple de Bézout pour (23,17) :\vskip 10pt -\begin{center}\begin{tabular}{c c c c} -(23,1,0) & (17,0,1) & $\longrightarrow$ & $q=1$ \\ -(17,0,1) & (6,1,-1) & $\longrightarrow$ & $q=2$ \\ -(6,1,-1) & (5,-2,3) & $\longrightarrow$ & $q=1$ \\ -(5,-2,3) & (1,3,-4) & $\longrightarrow$ & $q=5$ \\ -(1,3,-4) & (0,-17,23) & $\longrightarrow$ & FIN -\end{tabular}\end{center}\vskip 10pt -On a bien $3 \times 23-4 \times 17=1$.\psaut -\end{Ex} - -\begin{Rem} -Il est possible d'obtenir -1 (ou $-d$ en général) comme résultat, donc $au-bv=-1$, cela dépend de la parité du nombre d'itérations effectuées dans l'algorithme précédent. - -Ce n'est pas un résultat faux, puisqu'alors $bv-au=1$ et qu'on a quand même un couple de Bézout pour $(b,a)$. - -S'il est nécessaire d'obtenir un couple $(u,v)$ tel que $au-bv=1$ -et où $a$ et $b$ figurent dans cet ordre, et que l'algorithme a fourni un couple $(u',v')$ tel que $bv'-au'=1$, il suffit de prendre $u=b-u'$ et $v=a-v'$ et, dans ces conditions $au-bv=a(b-u')-b(a-v')= ab -au' -ab +bv'=bv'-au'=1$. -\end{Rem} - -\begin{Exo} -Exprimer $pgcd(1330,602)$ comme combinaison à coefficients entiers des nombres 1330 et 602. -\end{Exo} - - - -\begin{Theo}[Théorème de Gauss] -Soient $a$, $b$ et $c$ trois entiers naturel non nuls. -Si $a$ divise le produit $bc$ et si $a$ est premier avec $b$, -alors $a$ divise $c$. -\end{Theo} - - -\begin{Exo} -L'objectif est de résoudre l'équation $(E)$ d'inconnues $x$ et $y$ -$405x -120y =15$. -\begin{enumerate} -\item Trouver le pgcd de 405 et 120 à l'aide de l'algorithme d'Euclide. -\item En déduire une solution particulière de cette équation. -\item En utilisant la solution particulière, montrer que $(E)$ est - équivalente à $27(x-3) = 8(y-10)$. -\item Utiliser le théorème de Gauss pour montrer que - l'ensemble solution de $(E)$ est $\{(8k+3;27k+10)| k \in \Z\}$. -\end{enumerate} -\end{Exo} - \centerline{\x{Fin du Chapitre}} \ No newline at end of file