Trouver $R$, $x$, $P_s$, $q_i$ minimisant $$ \begin{array}{l} L(R,x,P_s,q,u,v,\lambda,w)= \\ \sum_{i \in N }q_i^2 + \sum_{h \in V, l \in L }\delta.x_{hl}^2 + \sum_{h \in V }\delta.R_{h}^2 \\ + \sum_{h \in V }\sum_{i \in N } u_{hi} \left(\sum_{l \in L }a_{il}x_{hl} - \eta_{hi}\right) \\ + \sum_{h \in V}v_{h}.\left( \dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} - R_h \right) \\ + \sum_{i \in N} \lambda_{i}. \left( P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \right. \\ \qquad \qquad \qquad + \left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) - q.B_i \right) \\ + \sum_{l \in L} w_l. \left( \sum_{i \in N} a_{il}.q_i \right) \end{array} $$ \begin{itemize} \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$ \item $R_h \geq 0, \forall h \in V$ \item $P_{sh} > 0,\forall h \in V$ \item $q_i > 0,\forall i \in N$ \end{itemize}