\begin{itemize} \item Trouver $R$, $x$, $P_s$ minimisant $\sum_{i \in N }q_i^2$ t.q. \item $\sum_{l \in L }a_{il}x_{hl} = \eta_{hi},\forall h \in V, \forall i \in N $ \item $\dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} \leq R_h \forall h \in V$ \item $P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) + \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N$ \item $\sum_{i \in N} a_{il}.q_i = 0 forall l \in L$ \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$ \item $R_h \geq 0, \forall h \in V$ \item $P_{sh} > 0,\forall h \in V$ \end{itemize}