\documentclass[journal]{IEEEtran} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} %\usepackage{ntheorem} \usepackage{amsmath,amssymb} \usepackage{epsfig,psfrag} \usepackage{graphics,graphicx} \usepackage{color} \usepackage{dsfont} \usepackage{graphicx} \usepackage{subfigure} \usepackage{stmaryrd} \usepackage{color} \usepackage{cite} \usepackage{url} \usepackage{booktabs} \usepackage{epstopdf} \newcommand{\JFC}[1]{\begin{color}{green}\textit{#1}\end{color}} \newcommand{\CG}[1]{\begin{color}{blue}\textit{}\end{color}} \author{ Jean-Fran\c cois Couchot, Christophe Guyeux, and Jacques M. Bahi,~\IEEEmembership{Senior Member,~IEEE}\\ FEMTO-ST Institute, UMR 6174 CNRS\\ DISC Department, University of Franche-Comt\'{e}\\ Belfort, France\\ \{jean-francois.couchot, christophe.guyeux, jacques.bahi\}@femto-st.fr\\ } \input{macroE} \title{Mathematical topology: a new practicable framework for studying information-hiding security. Application to Spread-Spectrum schemes.} \begin{document} \maketitle \newcommand{\ie}{\textit{i.e.}} %\newcommand{\Nats}[0]{\ensuremath{\mathds{N}}} %\newcommand{\R}[0]{\ensuremath{\mathds{R}}} %\newcommand{\Bool}[0]{\ensuremath{\mathds{B}}} \begin{abstract} Information hiding security is often expressed as a probability problem. However, various classes of attacks cannot currently be addressed, due to strong hypotheses not compatible with a probabilistic approach. In this work, a complementary theoretical framework is presented to improve security. Contrary to existing ones, it is not based on probability theory, but on mathematical topology. It addresses thus security issues in classes of attacks that are not currently studied. It can also be used to reinforce the confidence in a new scheme. In this paper, first the theoretical framework of the study is presented, then some concrete examples are detailed in order to show how our approach can be applied. \end{abstract} \begin{IEEEkeywords} Information Hiding Security, Mathematical Theory of Chaos, Spread-Spectrum, Discrete Dynamical Systems, Chaotic Iterations \end{IEEEkeywords} \section{Introduction} \input{intro} \section{Related Work and Contributions} \label{Refs} \input{refs} %\JFC{ %Reprendre les contributions.} %\input{contribs} \section{Chaos for Data Hiding Security} \label{section:Chaos} This section starts with a state of the art in chaos-based information hiding (Sec.~\ref{subsection:ChaosInComputerScience}). It reminds the readers of the theory of chaos as introduced by Devaney (Sec.~\ref{subsection:Devaney}). Other qualitative and quantitative properties are next introduced (Sec.~\ref{subsection:properties}). Their application to information hiding concludes this section (Sec.~\ref{subsection:links}). \subsection{State of the Art} \label{subsection:ChaosInComputerScience} \input{art.tex} \subsection{Devaney's Chaotic Dynamical Systems} \label{subsection:Devaney} \input{devaney} \subsection{Qualitative and Quantitative Properties of Discrete Dynamical Systems} \label{subsection:properties} \input{properties} \subsection{Chaos Properties and Information Hiding Security} \label{subsection:links} \input{relations} \section{Chaos-Security of two Data Hiding Schemes} \label{CS} To check whether an existing data hiding scheme is chaos-secure, we first write it as an iterate process $X^{n+1}=f(X^n)$ defined on the set $\mathcal{X}$, with $X^0$ as the initial configuration of the machine. Let then $\mathcal{T}(S)$ be the iterative process of a data hiding scheme $S$ and $\tau$ be a topology on the topological space $\mathcal{X}$. If $\mathcal{T}(S)$ has a chaotic behavior on $\mathcal{X}$, as defined by Devaney, $S$ is said to be \emph{chaos-secure} on $(\mathcal{X},\tau)$. This section studies two classes of data hiding schemes in the perspective of chaos theory. \subsection{Spread-Spectrum Data Hiding Schemes} \label{SS} \input{spreadspectrum} \subsection{dhCI: Chaos-based Expansive Data Hiding Schemes} \label{sec:Algo} \input{dhci} \section{Discussion and Future Work} \input{conclusion} %\bibliographystyle{compj} \bibliographystyle{IEEEtran} \bibliography{forensicsVer4} \end{document}