+They first introduce dual variables
+$u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any
+$h \in V$,$ i \in N$, and $l \in L$.
+They next replace the objective of reducing $\sum_{i \in N }q_i^2$
+by the objective of reducing
+$$
+\sum_{i \in N }q_i^2 +
+\sum_{h \in V, l \in L } \delta.x_{hl}^2
++ \sum_{h \in V }\delta.R_{h}^2
+$$
+where $\delta$ is a \JFC{ formalisation} factor.
+This allows indeed to get convex functions whose minimum value is unique.
+
+The proposed algorithm iteratively computes the following variables