+$$
+\begin{array}{l}
+P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \\
+\qquad +
+ \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q_i.B_i, \forall i \in N
+\end{array}
+$$
+and where the following constraint is added
+$q_i > 0, \forall i \in N$.
+
+
+
+They thus replace the objective of reducing
+$\sum_{i \in N }q_i^2$
+by the objective of reducing
+\begin{equation}
+\sum_{i \in N }q_i^2 +
+\sum_{h \in V, l \in L } \delta.x_{hl}^2
++ \sum_{h \in V }\delta.R_{h}^2
+\label{eq:obj2}
+\end{equation}
+where $\delta$ is a regularisation factor.
+This indeed introduces quadratic functions on variables $x_{hl}$ and
+$R_{h}$ and makes some of the functions strictly convex.
+
+The authors then apply a classical dual based approach with Lagrange multiplier
+to solve such a problem~\cite{PM06}.
+They first introduce dual variables
+$u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any
+$h \in V$, $ i \in N$, and $l \in L$.
+
+\begin{equation}
+\begin{array}{l}
+L(R,x,P_{s},q,u,v,\lambda,w)=\\
+\sum_{i \in N} \left( q_i^2 + q_i. \left(
+\sum_{l \in L } a_{il}w_l-
+\lambda_iB_i
+\right)\right) \\
++ \sum_{h \in V} \left(
+v_h.\dfrac{\ln(\sigma^2/D_h)}{\gamma P_{sh} ^{2/3}} + \lambda_h P_{sh} \right)\\
++ \sum_{h \in V} \sum_{l\in L}
+\left(
+\delta.x_{hl}^2 \right.\\
+\qquad \qquad + x_{hl}.
+\sum_{i \in N} \left(
+\lambda_{i}.(c^s_l.a_{il}^{+} +
+c^r. a_{il}^{-} ) \right.\\
+\qquad \qquad\qquad \qquad +
+\left.\left. u_{hi} a_{il}
+\right)
+\right)\\
+ + \sum_{h \in V} \left(
+\delta R_{h}^2
+-v_h.R_{h} - \sum_{i \in N} u_{hi}\eta_{hi}\right)
+\end{array}
+\label{eq:dualFunction}
+\end{equation}
+
+The proposed algorithm iteratively computes the following variables
+until the variation of the dual function is less than a given threshold.
+\begin{enumerate}
+\item $ u_{hi}^{(k+1)} = u_{hi}^{(k)} - \theta^{(k)}. \left(
+ \eta_{hi}^{(k)} - \sum_{l \in L }a_{il}x_{hl}^{(k)} \right) $
+\item
+$v_{h}^{(k+1)}= \max\left\{0,v_{h}^{(k)} - \theta^{(k)}.\left( R_h^{(k)} - \dfrac{\ln(\sigma^2/D_h)}{\gamma.(P_{sh}^{(k)})^{2/3}} \right)\right\}$
+\item
+ $\begin{array}{l}
+ \lambda_{i}^{(k+1)} = \max\left\{0, \lambda_{i}^{(k)} - \theta^{(k)}.\left(
+ q^{(k)}.B_i - P_{si}^{(k)} \right. \right.\\
+ \qquad\qquad\qquad -\sum_{l \in L}a_{il}^{+}.c^s_l. \sum_{h \in V}x_{hl}^{(k)} \\
+ \qquad\qquad\qquad - \left.\left. c^r.\sum_{l \in L} a_{il}^{-}. \sum_{h \in V}x_{hl}^{(k)} \right) \right\}
+\end{array}
+$