\delta_x \sum_{h \in V, l \in L } x_{hl}^2
+ \delta_r\sum_{h \in V }R_{h}^2
+ \delta_p\sum_{h \in V }P_{sh}^{\frac{8}{3}}.
-\label{eq:obj2}
+\label{eq:obj2p}
\end{equation}
In this equation we have first introduced new regularisation factors
(namely $\delta_x$, $\delta_r$, and $\delta_p$)
\begin{array}{rcl}
f'(p) &=& -2/3.v_h.\dfrac{\ln(\sigma^2/D_h)}{\gamma p^{5/3}} + \lambda_h +
8/3.\delta_p p^{5/3} \\
-& = & \dfrac {8/3\gamma.\delta_p p^{10/3} + \lambda_h p^{5/3} -2/3.v_h\ln(\sigma^2/D_h) }{p^{5/3}}
+& = & \dfrac {8/3.\delta_p p^{10/3} + \lambda_h p^{5/3} -2/3\gamma.v_h\ln(\sigma^2/D_h) }{p^{5/3}}
\end{array}
$$
which is positive if and only if the numerator is.