X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/blobdiff_plain/17a131a2d00611e1582103549a9c7d2bac2be03e..8fb8450d3502fa222259b4af30b97b450e7e6143:/IWCMC14/HLG.tex?ds=inline diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex index 7daf581..998f94b 100644 --- a/IWCMC14/HLG.tex +++ b/IWCMC14/HLG.tex @@ -11,7 +11,7 @@ Large lircles represent the maximum transmission range which is set to 20 in a square region which is $50 m \times 50 m$. \end{scriptsize} -\caption{Illustration of a SN of size 10}\label{fig:sn}. +\caption{Illustration of a Sensor Network of size 10}\label{fig:sn}. \end{center} \end{figure*} @@ -65,7 +65,7 @@ The initial energy of the $i$ node is $B_i$. The transmission consumed power of node $i$ is $P_{ti} = c_l^s.y_l$ where $c_l^s$ is the transmission energy consumption cost of link $l$, $l\in L$. This cost is defined -as foolows: $c_l^s = \alpha +\beta.d_l^{n_p} $ wehre +as foolows: $c_l^s = \alpha +\beta.d_l^{n_p} $ where $d_l$ represents the distance of the link $l$, $\alpha$, $\beta$, and $n_p$ are constant. The reception consumed power of node $i$ is @@ -74,17 +74,24 @@ where $c^r$ is a reception energy consumption cost. The overall consumed power of the $i$ node is $P_{si}+ P_{ti} + P_{ri}= P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.y_l + -\sum_{l \in L} a_{il}^{-}.c^r.y_l \leq q.B_i. -$ - -The objective is thus to find $R$, $x$, $P_s$ which minimize - $q$ under the following set of constraints +\sum_{l \in L} a_{il}^{-}.c^r.y_l $. +%\leq q.B_i. +%$ + +The objective is thus to find $R$, $x$, $P_s$ which maximizes +the network lifetime $T_{\textit{net}}$, or equivalently which minimizes +$q=1/{T_{\textit{net}}}$. +Let $B_i$ is the initial energy in node $i$. +One have the equivalent objective to find $R$, $x$, $P_s$ which minimizes +$q^2$ +under the following set of constraints: \begin{enumerate} \item $\sum_{l \in L }a_{il}x_{hl} = \eta_{hi},\forall h \in V, \forall i \in N $ \item $ \sum_{h \in V}x_{hl} = y_l,\forall l \in L$ \item $\dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} \leq R_h \forall h \in V$ \item \label{itm:q} $P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.y_l + -\sum_{l \in L} a_{il}^{-}.c^r.y_l \leq q.B_i, \forall i \in N$ +c^r.\sum_{l \in L} a_{il}^{-}.y_l \leq q.B_i, \forall i \in N$ +\item $\sum_{i \in N} a_{il}q_i = 0, \forall l \in L$ \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$ \item $R_h \geq 0, \forall h \in V$ \item $P_{sh} > 0,\forall h \in V$ @@ -99,9 +106,12 @@ $$ \begin{array}{l} P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \\ \qquad + - \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N + \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q_i.B_i, \forall i \in N \end{array} $$ +and where the following constraint is added +$$ $q_i > 0, \forall i \in N $$ + They thus replace the objective of reducing