X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/blobdiff_plain/465f4bf04069c64e49bc9420f434a0b96cbcd127..b41ef425e5e9f8ab1e567e38b17f250bf4a75c75:/IWCMC14/HLG.tex diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex index 183e00b..1008903 100644 --- a/IWCMC14/HLG.tex +++ b/IWCMC14/HLG.tex @@ -70,7 +70,6 @@ The objective is thus to find $R$, $x$, $P_s$ which minimize \item $P_{sh} > 0,\forall h \in V$ \end{enumerate} - To achieve this optimizing goal a local optimisation, the problem is translated into an equivalent one: find $R$, $x$, $P_s$ which minimize @@ -84,23 +83,54 @@ P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \\ \end{array} $$ -The authors then apply a dual based approach with Lagrange multiplier -to solve such a problem. -They first introduce dual variables -$u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any -$h \in V$,$ i \in N$, and $l \in L$. -They next replace the objective of reducing $\sum_{i \in N }q_i^2$ + +They thus replace the objective of reducing +$\sum_{i \in N }q_i^2$ by the objective of reducing -$$ +\begin{equation} \sum_{i \in N }q_i^2 + \sum_{h \in V, l \in L } \delta.x_{hl}^2 + \sum_{h \in V }\delta.R_{h}^2 -$$ -where $\delta$ is a \JFC{ formalisation} factor. -This allows indeed to get convex functions whose minimum value is unique. +\label{eq:obj2} +\end{equation} +where $\delta$ is a regularisation factor. +This indeed introduces quadratic fonctions on variables $x_{hl}$ and +$R_{h}$ and makes some of the functions strictly convex. + +The authors then apply a classical dual based approach with Lagrange multiplier +to solve such a problem~\cite{}. +They first introduce dual variables +$u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any +$h \in V$,$ i \in N$, and $l \in L$. -The proposed algorithm iteratively computes the following variables +\begin{equation} +\begin{array}{l} +L(R,x,P_{s},q,u,v,\lambda,w)=\\ +\sum_{i \in N} q_i^2 + q_i. \left( +\sum_{l \in L } a_{il}w_l^{(k)}- +\lambda_iB_i +\right)\\ ++ \sum_{h \in V} +v_h.\dfrac{\ln(\sigma^2/D_h)}{\gamma P_{sh} ^{2/3}} + \lambda_h P_{sh}\\ ++ \sum_{h \in V} \sum_{l\in L} +\left( +\delta.x_{hl}^2 \right.\\ +\qquad \qquad + x_{hl}. +\sum_{i \in N} \left( +\lambda_{i}.(c^s_l.a_{il}^{+} + +c^r. a_{il}^{-} ) \right.\\ +\qquad \qquad\qquad \qquad + +\left.\left. u_{hi} a_{il} +\right) +\right)\\ + + \sum_{h \in V} +\delta R_{h}^2 +-v_h.R_{h} - \sum_{i \in N} u_{hi}\eta_{hi} +\end{array} +\end{equation} +The proposed algorithm iteratively computes the following variables +untill the variation of the dual function is less than a given threshold. \begin{enumerate} \item $ u_{hi}^{(k+1)} = u_{hi}^{(k)} - \theta^{(k)}. \left( \eta_{hi}^{(k)} - \sum_{l \in L }a_{il}x_{hl}^{(k)} \right) $ @@ -125,7 +155,7 @@ $\theta^{(k)} = \omega / t^{1/2}$ \item $q_i^{(k)} = \arg\min_{q_i>0} \left( -q^2 + q. +q_i^2 + q_i. \left( \sum_{l \in L } a_{il}w_l^{(k)}- \lambda_i^{(k)}B_i @@ -171,4 +201,4 @@ c^r. a_{il}^{-} ) \right.\\ $ \end{enumerate} where the first four elements are dual variable and the last four ones are -primal ones \ No newline at end of file +primal ones. \ No newline at end of file