X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/blobdiff_plain/e6cd9df3d469f7916d513610d3bc22ab055f790a..74148119c4eab3cb701943974e740e25f9ab0c7a:/IWCMC14/HLG.tex?ds=inline diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex index 86ebbc2..1f9fab9 100644 --- a/IWCMC14/HLG.tex +++ b/IWCMC14/HLG.tex @@ -128,7 +128,7 @@ This indeed introduces quadratic functions on variables $x_{hl}$ and $R_{h}$ and makes some of the functions strictly convex. The authors then apply a classical dual based approach with Lagrange multiplier -to solve such a problem~\cite{}. +to solve such a problem~\cite{PM06}. They first introduce dual variables $u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any $h \in V$, $ i \in N$, and $l \in L$.