X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/blobdiff_plain/e6cd9df3d469f7916d513610d3bc22ab055f790a..ee130e6966e1e2f76dbf655947b04762008e12b9:/IWCMC14/convexity.tex?ds=inline diff --git a/IWCMC14/convexity.tex b/IWCMC14/convexity.tex index 0f7bf7e..b1f2900 100644 --- a/IWCMC14/convexity.tex +++ b/IWCMC14/convexity.tex @@ -38,7 +38,7 @@ $$ \begin{array}{rcl} f'(p) &=& -2/3.v_h.\dfrac{\ln(\sigma^2/D_h)}{\gamma p^{5/3}} + \lambda_h + 8/3.\delta_p p^{5/3} \\ -& = & \dfrac {8/3\gamma.\delta_p p^{10/3} + \lambda_h p^{5/3} -2/3.v_h\ln(\sigma^2/D_h) }{p^{5/3}} +& = & \dfrac {8/3.\delta_p p^{10/3} + \lambda_h p^{5/3} -2/3\gamma.v_h\ln(\sigma^2/D_h) }{p^{5/3}} \end{array} $$ which is positive if and only if the numerator is.