X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/blobdiff_plain/eff67eeac67ec967add0eb7e5e90d500ac32a491..fe438aa764b5d1ad7ea61512cffbb3761eff99b7:/IWCMC14/argmin.tex diff --git a/IWCMC14/argmin.tex b/IWCMC14/argmin.tex index 0f64780..5677856 100644 --- a/IWCMC14/argmin.tex +++ b/IWCMC14/argmin.tex @@ -1,5 +1,5 @@ The approach detailed previously requires to compute -the variable that minimizes four convex fonctions +the variable that minimizes four convex functions on constraint domains, one for each primal variable $q_i$, $P_{sh}$, $R_h$, and $x_{hl}$, Among state of the art for this optimization step, there is @@ -7,21 +7,25 @@ the L-BFGS-B algorithm~\cite{byrd1995limited}, the truncated Newton algorithm, the Constrained Optimization BY Linear Approximation (COBYLA) method~\cite{ANU:1770520}. However, all these methods suffer from being iterative approaches -and need many steps of computation to obtain an approximation -of the minimal value. This approach is dramatic whilst the objective is to -reduce all the computation steps. +each iteration including many steps of computation to obtain an approximation +of the minimal value. +This approach is dramatic since the objective is to +reduce all the computation steps to increase the network lifetime. A closer look to each function that has to be minimized shows that it is differentiable and the minimal value can be computed in only one step. The table~\ref{table:min} presents these minimal value for each primal variable. +Thanks to this formal calculus, computing the +new iterate of each primal variable only requires +one computation step. \begin{table*}[t] $$ \begin{array}{|l|l|l|} \hline -q_i^{(k)} & - \arg\min_{q_i>0} +q_i^{(k+1)} & + \arg\min_{q>0} \left( q^2 + q. \left( @@ -30,35 +34,35 @@ q^2 + q. \right) \right) & -\max \left(\epsilon,\dfrac{\sum_{l \in L } a_{il}w_l^{(k)}- -\lambda_i^{(k)}B_i}{2}\right) \\ +\max \left\{\epsilon,\dfrac{\sum_{l \in L } a_{il}w_l^{(k)}- +\lambda_i^{(k)}B_i}{2}\right\} \\ \hline -P_{sh}^{(k)}& +P_{sh}^{(k+1)}& \arg \min_{p > 0} \left( v_h^{(k)}.\dfrac{\ln(\sigma^2/D_h)}{\gamma p^{2/3}} + \lambda_h^{(k)}p + \delta_p p^{8/3} \right) & -\max \left(\epsilon, +\max \left\{\epsilon, \left( \dfrac{ --\lambda_h^{(k)} + \sqrt{(\lambda_h^{(k)})^2 + \dfrac{64}{9}\alpha} -}{\frac{16}{3}\delta_p} +-3\lambda_h^{(k)} + \sqrt{(3\lambda_h^{(k)})^2 + 64\delta_p/\gamma.\ln(\sigma^2/D_h)} +}{16\delta_p} \right)^{\frac{3}{5}} -\right) \\ +\right\} \\ \hline -R_h^{(k)} +R_h^{(k+1)} & \arg \min_{r \geq 0 } \left( \delta_r r^2 -v_h^{(k)}.r - \sum_{i \in N} u_{hi}^{(k)} \eta_{hi} \right) & -\max\left(0,\dfrac{v_h^{(k)}}{2\delta_r}\right) +\max\left\{0,\dfrac{v_h^{(k)}}{2\delta_r}\right\} \\ \hline -x_{hl}^{(k)} & +x_{hl}^{(k+1)} & \begin{array}{l} \arg \min_{x \geq 0} \left( @@ -73,15 +77,73 @@ c^r. a_{il}^{-} ) \right.\\ \right) \end{array} & -\max\left(0,\dfrac{-\sum_{i \in N} \left( +\max\left\{0,\dfrac{-\sum_{i \in N} \left( \lambda_{i}^{(k)}.(c^s_l.a_{il}^{+} + c^r. a_{il}^{-} ) + u_{hi}^{(k)} a_{il} -\right)}{2\delta_x}\right) +\right)}{2\delta_x}\right\} \\ \hline \end{array} $$ -\caption{Expression of each optimized primal variable} +\caption{Primal Variables: Argmin and Direct Calculus}\label{table:min} \end{table*} - \ No newline at end of file + +This improvment has been evaluated on a set of experiments. +For 10 tresholds $t$, such that $1E-5 \le t \le 1E-3$, we have +executed 10 times the aproach detailled before either with the new +gradient calculus or with the original argmin one. +The Table~\ref{Table:argmin:time} summarizes the averages of these +excution times, given in seconds. We remark time spent with the gradient +approach is about 37 times smaller than the one of the argmin one. +Among implementations of argmin aproaches, we have retained +the COBYLA one since it does not require any gradient to be executed. + +\begin{table*} +\begin{scriptsize} +$$ +\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|} +\hline +\textrm{Convergence Treshold} & +10^{-5} & +1.67.10^{-5} & +2.78.10^{-5} & +4.64.10^{-5} & +7.74.10^{-5} & +1.29.10^{-4} & +2.15.10^{-4} & +3.59.10^{-4} & +5.99.10^{-4} & +0.001 \\ +\hline +\textrm{Gradient Calculus} & +56.29 & +29.17 & +37.05 & +6.05 & +5.47 & +3.82 & +1.91 & +2.37 & +0.87 & +0.65 \\ +\hline +\textrm{Argmin Method} & +2224.27 & +1158.37 & +1125.21& +216.82& +162.26& +126.99& +58.044& +74.204& +23.99& +15.85\\ +\hline +\end{array} +$$ +\caption{Convergence Times for Gradient and Argmin Methods}\label{Table:argmin:time} +\end{scriptsize} +\end{table*} + + \ No newline at end of file