From: Jean-François Couchot Date: Tue, 3 Dec 2013 16:32:15 +0000 (+0100) Subject: convexity modification X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/commitdiff_plain/110a1a5d3f942917cabd4b60afa51b0ea2989229?hp=30b003311b2d550b2d7fbe8179df2320df1acf2f convexity modification --- diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex index 1008903..ff12b04 100644 --- a/IWCMC14/HLG.tex +++ b/IWCMC14/HLG.tex @@ -138,10 +138,10 @@ untill the variation of the dual function is less than a given threshold. $v_{h}^{(k+1)}= \max\left\{0,v_{h}^{(k)} - \theta^{(k)}.\left( R_h^{(k)} - \dfrac{\ln(\sigma^2/D_h)}{\gamma.(P_{sh}^{(k)})^{2/3}} \right)\right\}$ \item $\begin{array}{l} - \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \theta^{(k)}.\left( - q^{(k)}.B_i \right.\\ + \lambda_{i}^{(k+1)} = \max\left\{0, \lambda_{i}^{(k)} - \theta^{(k)}.\left( + q^{(k)}.B_i \right. \left.\\ \qquad\qquad\qquad -\sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl}^{(k)} \right) \\ - \qquad\qquad\qquad - \left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl}^{(k)} \right) - P_{si}^{(k)} \right) + \qquad\qquad\qquad - \left.\left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl}^{(k)} \right) - P_{si}^{(k)} \right) \right\} \end{array} $ @@ -162,7 +162,7 @@ q_i^2 + q_i. \right) \right)$ -\item +\item \label{item:psh} $ P_{sh}^{(k)} = diff --git a/IWCMC14/convexity.tex b/IWCMC14/convexity.tex index 0519ecb..9ca786a 100644 --- a/IWCMC14/convexity.tex +++ b/IWCMC14/convexity.tex @@ -1 +1,32 @@ - \ No newline at end of file +In the algorithm presented in the previous section, +the encoding power consumption is iteratively updated with +$ +P_{sh}^{(k)} += +\arg \min_{p > 0} +\left( +v_h^{(k)}.\dfrac{\ln(\sigma^2/D_h)}{\gamma p ^{2/3}} + \lambda_h^{(k)}p +\right) +$. +The function inside the $\arg \min$ is stricly convex if and only if +$\lamda_h$ is not null. This asymptotic configuration may arrise due to +the definition of $\lambda_i$. Worth, in this case, the function is +stricly decreasing and the minimal value is obtained when $p$ is the infinity. + +To prevent this configuration, we replace the objective function given +in equation~(\ref{eq:obj2}) by +\begin{equation} +\sum_{i \in N }q_i^2 + +\delta_x \sum_{h \in V, l \in L } .x_{hl}^2 ++ \delta_r\sum_{h \in V }\delta.R_{h}^2 ++ \delta_p\sum_{h \in V }\delta.P_{sh}^{\frac{8}{3}}. +\label{eq:obj2} +\end{equation} +In this equation we have first introduced new regularisation factors +(namely $\delta_x$, $\delta_r$, and $\delta_p$) +instead of the sole $\delta$. +This allows to further study the influence of each modification separately. +Next, the introduction of the rationnal exponent is motivated by the goal of +providing a stricly convex function. + + \ No newline at end of file diff --git a/IWCMC14/main.tex b/IWCMC14/main.tex index 49d816d..b887bc2 100644 --- a/IWCMC14/main.tex +++ b/IWCMC14/main.tex @@ -1,4 +1,4 @@ -\documentclass[10pt]{IEEEtran} +\documentclass{IEEEtran} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel}