From: couchot Date: Mon, 2 Dec 2013 21:09:28 +0000 (+0100) Subject: une section de plus X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/commitdiff_plain/30b003311b2d550b2d7fbe8179df2320df1acf2f?ds=inline;hp=-c une section de plus --- 30b003311b2d550b2d7fbe8179df2320df1acf2f diff --git a/IWCMC14/HLG.tex~ b/IWCMC14/HLG.tex~ deleted file mode 100644 index ac07357..0000000 --- a/IWCMC14/HLG.tex~ +++ /dev/null @@ -1,6 +0,0 @@ - -\inputFrameb{Contexte: réseau de capteurs vidéos}{cv} -\inputFrameb{Formalisation: réseau et flux}{formalisationflux} -\inputFrameb{Formalisation: énergie}{formalisationenergie} -\inputFrameb{Formulation globale}{formalisationglobale} -\inputFrameb{Formulation simplifiée}{formalisationsimplifiee} \ No newline at end of file diff --git a/IWCMC14/main.tex~ b/IWCMC14/main.tex~ deleted file mode 100644 index 2fa9db6..0000000 --- a/IWCMC14/main.tex~ +++ /dev/null @@ -1,179 +0,0 @@ -\documentclass[journal]{IEEEtran} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage[english]{babel} -%\usepackage{ntheorem} -\usepackage{amsmath,amssymb} -\usepackage{epsfig,psfrag} -\usepackage{graphics,graphicx} -\usepackage{color} -\usepackage{dsfont} -\usepackage{graphicx} -\usepackage{subfigure} -\usepackage{stmaryrd} -\usepackage{color} -\usepackage{cite} -\usepackage{url} -\usepackage{booktabs} -\usepackage{epstopdf} - -\newcommand{\JFC}[1]{\begin{color}{green}\textit{#1}\end{color}} -\newcommand{\CG}[1]{\begin{color}{blue}\textit{}\end{color}} - - - - -\author{ - Jean-Fran\c cois Couchot, Christophe Guyeux, and - Jacques M. Bahi,~\IEEEmembership{Senior Member,~IEEE}\\ - FEMTO-ST Institute, UMR 6174 CNRS\\ - DISC Department, University of Franche-Comt\'{e}\\ - Belfort, France\\ - \{jean-francois.couchot, christophe.guyeux, jacques.bahi\}@femto-st.fr\\ -} - - -\input{macroE} - - -\title{Mathematical topology: a new practicable framework for -studying information-hiding security. -Application to Spread-Spectrum schemes.} - - - - -\begin{document} -\maketitle - -\newcommand{\ie}{\textit{i.e.}} -%\newcommand{\Nats}[0]{\ensuremath{\mathds{N}}} -%\newcommand{\R}[0]{\ensuremath{\mathds{R}}} -%\newcommand{\Bool}[0]{\ensuremath{\mathds{B}}} - - - -\begin{abstract} -Information hiding security is often expressed as a probability problem. -However, various classes of attacks cannot currently be addressed, -due to strong hypotheses not compatible with a probabilistic approach. -In this work, a complementary theoretical framework is presented to -improve security. Contrary to existing ones, it is not based -on probability theory, but on mathematical topology. -It addresses thus security issues in classes of -attacks that are not currently studied. -It can also be used to reinforce the -confidence in a new scheme. -In this paper, first the theoretical framework of the study is presented, -then some concrete examples are detailed in order to show how our approach -can be applied. -\end{abstract} - - - -\begin{IEEEkeywords} -Information Hiding Security, - Mathematical Theory of Chaos, -Spread-Spectrum, Discrete Dynamical Systems, -Chaotic Iterations -\end{IEEEkeywords} - - - - - - - - -\section{Introduction} -\input{intro} - - - - -\section{Related Work and Contributions} -\label{Refs} -\input{refs} - - - - - -%\JFC{ -%Reprendre les contributions.} -%\input{contribs} - - - -\section{Chaos for Data Hiding Security} -\label{section:Chaos} - -This section starts with a state of the art in chaos-based information hiding -(Sec.~\ref{subsection:ChaosInComputerScience}). -It reminds the readers of the theory of chaos as introduced by Devaney -(Sec.~\ref{subsection:Devaney}). -Other qualitative and quantitative properties are next introduced -(Sec.~\ref{subsection:properties}). -Their application to information hiding concludes this section (Sec.~\ref{subsection:links}). - -\subsection{State of the Art} -\label{subsection:ChaosInComputerScience} -\input{art.tex} - -\subsection{Devaney's Chaotic Dynamical Systems} -\label{subsection:Devaney} -\input{devaney} - -\subsection{Qualitative and Quantitative -Properties of Discrete Dynamical Systems} -\label{subsection:properties} -\input{properties} - -\subsection{Chaos Properties and Information Hiding Security} -\label{subsection:links} -\input{relations} - - -\section{Chaos-Security of two Data Hiding Schemes} -\label{CS} - -To check whether an existing data hiding scheme is chaos-secure, we -first write it as an iterate process $X^{n+1}=f(X^n)$ -defined on the set $\mathcal{X}$, with $X^0$ as the initial -configuration of the machine. -Let then $\mathcal{T}(S)$ be the iterative process of a data hiding scheme $S$ -and $\tau$ be a topology on the topological space $\mathcal{X}$. -If $\mathcal{T}(S)$ has a chaotic behavior on $\mathcal{X}$, -as defined by Devaney, $S$ is said -to be \emph{chaos-secure} on $(\mathcal{X},\tau)$. - -This section studies two classes of -data hiding schemes in the perspective -of chaos theory. - - - - -\subsection{Spread-Spectrum Data Hiding Schemes} -\label{SS} -\input{spreadspectrum} - - -\subsection{dhCI: Chaos-based Expansive Data Hiding Schemes} -\label{sec:Algo} -\input{dhci} - - - -\section{Discussion and Future Work} -\input{conclusion} - - -%\bibliographystyle{compj} -\bibliographystyle{IEEEtran} -\bibliography{forensicsVer4} - - - - -\end{document}