From: Jean-François Couchot Date: Fri, 6 Dec 2013 09:13:42 +0000 (+0100) Subject: modification de refs X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/commitdiff_plain/ae93ee0d91e2a8f31ec45f7b77f9e81294630f07 modification de refs --- diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex index 86ebbc2..1f9fab9 100644 --- a/IWCMC14/HLG.tex +++ b/IWCMC14/HLG.tex @@ -128,7 +128,7 @@ This indeed introduces quadratic functions on variables $x_{hl}$ and $R_{h}$ and makes some of the functions strictly convex. The authors then apply a classical dual based approach with Lagrange multiplier -to solve such a problem~\cite{}. +to solve such a problem~\cite{PM06}. They first introduce dual variables $u_{hi}$, $v_{h}$, $\lambda_{i}$, and $w_l$ for any $h \in V$, $ i \in N$, and $l \in L$. diff --git a/IWCMC14/convexity.tex b/IWCMC14/convexity.tex index b1f2900..172ca37 100644 --- a/IWCMC14/convexity.tex +++ b/IWCMC14/convexity.tex @@ -20,7 +20,7 @@ in equation~(\ref{eq:obj2}) by \delta_x \sum_{h \in V, l \in L } x_{hl}^2 + \delta_r\sum_{h \in V }R_{h}^2 + \delta_p\sum_{h \in V }P_{sh}^{\frac{8}{3}}. -\label{eq:obj2} +\label{eq:obj2p} \end{equation} In this equation we have first introduced new regularisation factors (namely $\delta_x$, $\delta_r$, and $\delta_p$)