From: Jean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Date: Fri, 6 Dec 2013 09:13:42 +0000 (+0100)
Subject: modification de refs
X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/desynchronisation-controle.git/commitdiff_plain/ae93ee0d91e2a8f31ec45f7b77f9e81294630f07

modification de refs
---

diff --git a/IWCMC14/HLG.tex b/IWCMC14/HLG.tex
index 86ebbc2..1f9fab9 100644
--- a/IWCMC14/HLG.tex
+++ b/IWCMC14/HLG.tex
@@ -128,7 +128,7 @@ This indeed introduces quadratic functions on variables $x_{hl}$ and
 $R_{h}$ and makes some of the functions strictly convex.
 
 The authors then apply a classical dual based approach with Lagrange multiplier 
-to solve such a problem~\cite{}.
+to solve such a problem~\cite{PM06}.
 They first introduce dual variables 
 $u_{hi}$, $v_{h}$, $\lambda_{i}$, and  $w_l$ for any 
 $h \in V$, $ i \in N$, and $l \in L$.
diff --git a/IWCMC14/convexity.tex b/IWCMC14/convexity.tex
index b1f2900..172ca37 100644
--- a/IWCMC14/convexity.tex
+++ b/IWCMC14/convexity.tex
@@ -20,7 +20,7 @@ in equation~(\ref{eq:obj2}) by
 \delta_x \sum_{h \in V, l \in L } x_{hl}^2 
 + \delta_r\sum_{h \in V }R_{h}^2
 + \delta_p\sum_{h \in V }P_{sh}^{\frac{8}{3}}.
-\label{eq:obj2}
+\label{eq:obj2p}
 \end{equation}
 In this equation we have first introduced new regularisation factors
 (namely $\delta_x$, $\delta_r$, and $\delta_p$)