-configured by the customer. A hardware description language (HDL) is used to
-configure a FPGA. FGPAs are composed of programmable logic components, called
-logic blocks. These blocks can be configured to perform simple (AND, XOR, ...)
-or complex combinational functions. Logic blocks are interconnected by
-reconfigurable links. Modern FPGAs contains memory elements and multipliers
-which enables to simplify the design and increase the speed. As the most complex
-operation operation on FGPAs is the multiplier, design of FGPAs should not used
-complex operations. For example, a divider is not an available operation and it
-should be programmed using simple components.
-
-FGPAs programming is very different from classic processors programming. When
-logic block are programmed and linked to performed an operation, they cannot be
-reused anymore. FPGA are cadenced slowly than classic processors but they can
-performed pipelined as well as pipelined operations. A pipeline provides a way
-manipulate data quickly since at each clock top to handle a new data. However,
-using a pipeline consomes more logics and components since they are not
-reusable, nevertheless it is probably the most efficient technique on FPGA.
-Parallel operations can be used in order to manipulate several data
-simultaneously. When it is possible, using a pipeline is a good solution to
-manipulate new data at each clock top and using parallelism to handle
-simultaneously several data streams.
-
-%% contraintes imposées par le FPGA : algo pipeline/parallele, pas d'op math complexe, ...
-
+configured by the customer. FGPAs are composed of programmable logic components,
+called configurable logic blocks (CLB). These blocks mainly contains look-up
+tables (LUT), flip/flops (F/F) and latches, organized in one or more slices
+connected together. Each CLB can be configured to perform simple (AND, XOR, ...)
+or complex combinational functions. They are interconnected by reconfigurable
+links. Modern FPGAs contain memory elements and multipliers which enable to
+simplify the design and to increase the performance. Nevertheless, all other
+complex operations, like division, trigonometric functions, $\ldots$ are not
+available and must be done by configuring a set of CLBs. Since this
+configuration is not obvious at all, it can be done via a framework, like
+ISE~\cite{ISE}. Such a software can synthetize a design written in a hardware
+description language (HDL), map it onto CLBs, place/route them for a specific
+FPGA, and finally produce a bitstream that is used to configre the FPGA. Thus,
+from the developper point of view, the main difficulty is to translate an
+algorithm in HDL code, taking account FPGA resources and constraints like clock
+signals and I/O values that drive the FPGA.
+
+Indeed, HDL programming is very different from classic languages like
+C. A program can be seen as a state-machine, manipulating signals that
+evolve from state to state. By the way, HDL instructions can execute
+concurrently. Basic logic operations are used to agregate signals to
+produce new states and assign it to another signal. States are mainly
+expressed as arrays of bits. Fortunaltely, libraries propose some
+higher levels representations like signed integers, and arithmetic
+operations.
+
+Furthermore, even if FPGAs are cadenced more slowly than classic
+processors, they can perform pipeline as well as parallel
+operations. A pipeline consists in cutting a process in sequence of
+small tasks, taking the same execution time. It accepts a new data at
+each clock top, thus, after a known latency, it also provides a result
+at each clock top. However, using a pipeline consumes more logics
+since the components of a task are not reusable by another
+one. Nevertheless it is probably the most efficient technique on
+FPGA. Because of its architecture, it is also very easy to process
+several data concurrently. When it is possible, the best performance
+is reached using parallelism to handle simultaneously several
+pipelines in order to handle multiple data streams.
+
+\subsection{The board}
+
+The board we use is designed by the Armadeus compagny, under the name
+SP Vision. It consists in a development board hosting a i.MX27 ARM
+processor (from Freescale). The board includes all classical
+connectors: USB, Ethernet, ... A Flash memory contains a Linux kernel
+that can be launched after booting the board via u-Boot.
+
+The processor is directly connected to a Spartan3A FPGA (from Xilinx)
+via its special interface called WEIM. The Spartan3A is itself
+connected to a Spartan6 FPGA. Thus, it is possible to develop programs
+that communicate between i.MX and Spartan6, using Spartan3 as a
+tunnel. By default, the WEIM interface provides a clock signal at
+100MHz that is connected to dedicated FPGA pins.
+
+The Spartan6 is an LX100 version. It has 15822 slices, each slice
+containing 4 LUTs and 8 flip/flops. It is equivalent to 101261 logic
+cells. There are 268 internal block RAM of 18Kbits, and 180 dedicated
+multiply-adders (named DSP48), which is largely enough for our
+project.
+
+Some I/O pins of Spartan6 are connected to two $2\times 17$ headers
+that can be used as user wants. For the project, they will be
+connected to the interface card of the camera.