]> AND Private Git Repository - dmems12.git/blobdiff - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
3ème commit :
[dmems12.git] / dmems12.tex
index a51313754361ffae82edc743e810be54fcb52a3e..f559661e358c7e6f2041166b10f9a7a69daf7081 100644 (file)
 Cantilevers  are  used  inside  atomic  force  microscope  which  provides  high
 resolution images of  surfaces.  Several technics have been  used to measure the
 displacement  of cantilevers  in litterature.   For example,  it is  possible to
 Cantilevers  are  used  inside  atomic  force  microscope  which  provides  high
 resolution images of  surfaces.  Several technics have been  used to measure the
 displacement  of cantilevers  in litterature.   For example,  it is  possible to
-determine  accurately   the  deflection  with   optic  interferometer~\cite{CantiOptic89},
-pizeoresistor~\cite{CantiPiezzo01}                 or                 capacitive
-sensing~\cite{CantiCapacitive03}.
-%% blabla +
+determine        accurately        the        deflection       with        optic
+interferometer~\cite{CantiOptic89},     pizeoresistor~\cite{CantiPiezzo01}    or
+capacitive  sensing~\cite{CantiCapacitive03}.  In  this paper  our  attention is
+focused   on  a  method   based  on   interferometry  to   measure  cantilevers'
+displacements.   In  this  method   cantilevers  are  illiminated  by  an  optic
+source. The interferometry produces fringes on each cantilevers which enables to
+compute the  cantilever displacement.   In order to  analyze the fringes  a high
+speed camera is used. Images need  to be processed quickly and then a estimation
+method  is   required  to  determine   the  displacement  of   each  cantilever.
+In~\cite{AFMCSEM11} {\bf verifier ref}, the authors have used an algorithm based
+on spline  to estimate  the cantilevers' positions.   The overall  process gives
+accurate results  but all the computation  are performed on  a standard computer
+using labview.  Consequently,  the main drawback of this  implementation is that
+the computer is a bootleneck in the overall process. In this paper we propose to
+use a  method based on least  square and to  implement all the computation  on a
+FGPA.
+
+The remainder  of the paper  is organized as  follows. Section~\ref{sec:measure}
+describes  more precisely  the measurement  process. Our  solution based  on the
+least  square   method  and   the  implementation  on   FPGA  is   presented  in
+Section~\ref{sec:solus}.       Experimentations      are       described      in
+Section~\ref{sec:results}.  Finally  a  conclusion  and  some  perspectives  are
+presented.
+
+
+
 %% quelques ref commentées sur les calculs basés sur l'interférométrie
 
 \section{Measurement principles}
 %% quelques ref commentées sur les calculs basés sur l'interférométrie
 
 \section{Measurement principles}
@@ -184,7 +206,7 @@ At first, only $M$ values of $I$ are known, for $x = 0, 1,
 \ldots,M-1$. A normalisation allows to scale known intensities into
 $[-1,1]$. We compute splines that fit at best these normalised
 intensities. Splines are used to interpolate $N = k\times M$ points
 \ldots,M-1$. A normalisation allows to scale known intensities into
 $[-1,1]$. We compute splines that fit at best these normalised
 intensities. Splines are used to interpolate $N = k\times M$ points
-(typically $k=3$ is sufficient), within $[0,M[$. Let call $x^s$ the
+(typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the
 coordinates of these $N$ points and $I^s$ their intensities.
 
 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
 coordinates of these $N$ points and $I^s$ their intensities.
 
 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
@@ -196,12 +218,15 @@ The phase is computed via the equation :
 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
 \end{equation}
 
 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
 \end{equation}
 
-Two things can be noticed. Firstly, the frequency could also be
-obtained using the derivates of spline equations, which only implies
-to solve quadratic equations. Secondly, frequency of each profile is
-computed a single time, before the acquisition loop. Thus, $sin(2\pi f
-x^s_i)$ and $cos(2\pi f x^s_i)$ could also be computed before the loop, which leads to a
-much faster computation of $\theta$.
+Two things can be noticed :
+\begin{itemize}
+\item the frequency could also be obtained using the derivates of
+  spline equations, which only implies to solve quadratic equations.
+\item frequency of each profile is computed a single time, before the
+  acquisition loop. Thus, $sin(2\pi f x^s_i)$ and $cos(2\pi f x^s_i)$
+  could also be computed before the loop, which leads to a much faster
+  computation of $\theta$.
+\end{itemize}
 
 \subsubsection{Least square algorithm}
 
 
 \subsubsection{Least square algorithm}
 
@@ -256,13 +281,15 @@ Several points can be noticed :
 computed.
 
 \item The simplest method to find the good $\theta$ is to discretize
 computed.
 
 \item The simplest method to find the good $\theta$ is to discretize
-  $[-\pi,\pi]$ in $N$ steps, and to search which step leads to the
+  $[-\pi,\pi]$ in $nb_s$ steps, and to search which step leads to the
   result closest to zero. By the way, three other lookup tables can
   also be computed before the loop :
 
   result closest to zero. By the way, three other lookup tables can
   also be computed before the loop :
 
-\[ sin \theta, cos \theta, \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
+\[ sin \theta, cos \theta, \]
 
 
-\item This search can be very fast using a dichotomous process in $log_2(N)$ 
+\[ \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
+
+\item This search can be very fast using a dichotomous process in $log_2(nb_s)$ 
 
 \end{itemize}
 
 
 \end{itemize}
 
@@ -280,15 +307,15 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
 
    \For{$i=0$ to $nb_s $}{
      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
 
    \For{$i=0$ to $nb_s $}{
      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
-     lut\_sin[$i$] $\leftarrow sin \theta$\\
-     lut\_cos[$i$] $\leftarrow cos \theta$\\
-     lut\_A[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
-     lut\_sinfi[$i$] $\leftarrow sin (2\pi f.i)$\\
-     lut\_cosfi[$i$] $\leftarrow cos (2\pi f.i)$\\
+     lut$_s$[$i$] $\leftarrow sin \theta$\\
+     lut$_c$[$i$] $\leftarrow cos \theta$\\
+     lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
+     lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\
+     lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\
    }
 \end{algorithm}
 
    }
 \end{algorithm}
 
-\begin{algorithm}[h]
+\begin{algorithm}[ht]
 \caption{LSQ algorithm - during acquisition loop.}
 \label{alg:lsq-during}
 
 \caption{LSQ algorithm - during acquisition loop.}
 \label{alg:lsq-during}
 
@@ -305,7 +332,7 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
    \For{$i=0$ to $M-1$}{
    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
    \For{$i=0$ to $M-1$}{
-     $I[i] \leftarrow I[i] - start - slope\times i$\tcc*[f]{slope removal}\\
+     $I[i] \leftarrow I[i] - start - slope\times i$\\
    }
    
    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
    }
    
    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
@@ -313,30 +340,149 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
 
    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
    \For{$i=0$ to $M-1$}{
 
    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
    \For{$i=0$ to $M-1$}{
-     $Is \leftarrow Is + I[i]\times $ lut\_sinfi[$i$]\\
-     $Ic \leftarrow Ic + I[i]\times $ lut\_cosfi[$i$]\\
+     $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\
+     $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\
    }
 
    }
 
-   $\theta \leftarrow -\pi$\\
-   $val_1 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
-   \For{$i=1-n_s$ to $n_s$}{
-     $\theta \leftarrow \frac{i.\pi}{n_s}$\\
-     $val_2 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
+   $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\
+   $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\
+
+   \While{$\delta >= 1$}{
+
+     $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
 
 
-     \lIf{$val_1 < 0$ et $val_2 >= 0$}{
-       $\theta_s \leftarrow \theta - \left[ \frac{val_2}{val_2-val_1}\times \frac{\pi}{n_s} \right]$\\
+     \If{$!(v_l < 0$ and $v_r >= 0)$}{
+       $v_l \leftarrow v_r$ \\
+       $b_l \leftarrow b_r$ \\
      }
      }
-     $val_1 \leftarrow val_2$\\
+     $\delta \leftarrow \frac{\delta}{2}$\\
+     $b_r \leftarrow b_l + \delta$\\
+   }
+   \uIf{$!(v_l < 0$ and $v_r >= 0)$}{
+     $v_l \leftarrow v_r$ \\
+     $b_l \leftarrow b_r$ \\
+     $b_r \leftarrow b_l + 1$\\
+     $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
+   }
+   \Else {
+     $b_r \leftarrow b_l + 1$\\
    }
 
    }
 
-\end{algorithm}
+   \uIf{$ abs(v_l) < v_r$}{
+     $b_{\theta} \leftarrow b_l$ \\
+   }
+   \Else {
+     $b_{\theta} \leftarrow b_r$ \\
+   }
+   $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\
 
 
+\end{algorithm}
 
 \subsubsection{Comparison}
 
 
 \subsubsection{Comparison}
 
-\subsection{VDHL design paradigms}
+We compared the two algorithms on the base of three criterions :
+\begin{itemize}
+\item precision of results on a cosinus profile, distorted with noise,
+\item number of operations,
+\item complexity to implement an FPGA version.
+\end{itemize}
 
 
-\subsection{VDHL implementation}
+For the first item, we produced a matlab version of each algorithm,
+running with double precision values. The profile was generated for
+about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1),
+phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$,
+step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of
+$\frac{\pi}{1024}$ on phase computation. Current A. Meister and
+M. Favre experiments show a ratio of 50 between variation of phase and
+the deflection of a lever. Thus, the maximal error due to
+discretization correspond to an error of 0.15nm on the lever
+deflection, which is smaller than the best precision they achieved,
+i.e. 0.3nm.
+
+For each test, we add some noise to the profile : each group of two
+pixels has its intensity added to a random number picked in $[-N,N]$
+(NB: it should be noticed that picking a new value for each pixel does
+not distort enough the profile). The absolute error on the result is
+evaluated by comparing the difference between the reference and
+computed phase, out of $2\pi$, expressed in percents. That is : $err =
+100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$.
+
+Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$.
+
+\begin{table}[ht]
+  \begin{center}
+    \begin{tabular}{|c|c|c|c|c|}
+      \hline
+  & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
+  noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline
+  0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
+  2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
+  5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
+  7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
+  10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
+  15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
+  30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
+
+\end{tabular}
+\caption{Error (in \%) for cosinus profiles, with noise.}
+\label{tab:algo_prec}
+\end{center}
+\end{table}
+
+These results show that the two algorithms are very close, with a
+slight advantage for LSQ. Furthemore, both behave very well against
+noise. Assuming the experimental ratio of 50 (see above), an error of
+1 percent on phase correspond to an error of 0.5nm on the lever
+deflection, which is very close to the best precision.
+
+Obviously, it is very hard to predict which level of noise will be
+present in real experiments and how it will distort the
+profiles. Nevertheless, we can see on figure \ref{fig:noise20} the
+profile with $N=10$ that leads to the biggest error. It is a bit
+distorted, with pikes and straight/rounded portions, and relatively
+close to most of that come from experiments. Figure \ref{fig:noise60}
+shows a sample of worst profile for $N=30$. It is completly distorted,
+largely beyond the worst experimental ones. 
+
+\begin{figure}[ht]
+\begin{center}
+  \includegraphics[width=9cm]{intens-noise20-spl}
+\end{center}
+\caption{Sample of worst profile for N=10}
+\label{fig:noise20}
+\end{figure}
+
+\begin{figure}[ht]
+\begin{center}
+  \includegraphics[width=9cm]{intens-noise60-lsq}
+\end{center}
+\caption{Sample of worst profile for N=30}
+\label{fig:noise60}
+\end{figure}
+
+The second criterion is relatively easy to estimate for LSQ and harder
+for SPL because of $atan$ operation. In both cases, it is proportional
+to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for
+SPL on $N = k\times M$, i.e. the number of interpolated points. 
+
+We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are
+already in lookup tables and only arithmetic operations (+, -, *, /)
+are taken account. Translating the two algorithms in C code, we obtain
+about 400 operations for LSQ and 1340 (plus the unknown for $atan$)
+for SPL. Even if the result is largely in favor of LSQ, we can notice
+that executing the C code (compiled with \tt{-O3}) of SPL on an
+2.33GHz Core 2 Duo only takes 6.5µs in average, which is under our
+desing goals. The final decision is thus driven by the third criterion.\\
+
+The Spartan 6 used in our architecture has hard constraint : it has no
+floating point units. Thus, all computations have to be done with
+integers. 
+
+
+
+\subsection{VHDL design paradigms}
+
+\subsection{VHDL implementation}
 
 \section{Experimental results}
 \label{sec:results}
 
 \section{Experimental results}
 \label{sec:results}